Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Maths Extension 1 – Trigonometry Trigonometry  Trigonometric Ratios  Exact Values & Triangles  Trigonometric Identities  ASTC Rule  Trigonometric Graphs  Sine & Cosine Rules  Area of a Triangle  Trigonometric Equations  Sums and Differences of angles  Double Angles  Triple Angles  Half Angles  T – formula  Subsidiary Angle formula  General Solutions of Trigonometric Equations  Radians  Arcs, Sectors, Segments  Trigonometric Limits  Differentiation of Trigonometric Functions  Integration of Trigonometric Functions  Integration of sin2x and cos2x  INVERSE TRIGNOMETRY  Inverse Sin – Graph, Domain, Range, Properties  Inverse Cos – Graph, Domain, Range, Properties  Inverse Tan – Graph, Domain, Range, Properties  Differentiation of Inverse Trigonometric Functions  Integration of Inverse Trigonometric Functions http://fatmuscle.cjb.net 1 Maths Extension 1 – Trigonometry Trigonometric Ratios θ hypotenuse adjacent opposite hypotenuse θ adjacent opposite Sine sin  = Cosine cos  = Tangent tan  = Cosecant cosec  = Secant sec  = Cotangent cot  = sin  cos  tan  cosec  sec  cot  = = = = = = sin  cos = = = cos90    sin 90    cot 90    sec90    cosec90    tan 90    60’’ = 1’ 60’ = 1° 60 seconds = 1 minute 60 minutes = 1 degree tan   1 sin  1 cos 1 tan  opposite hypotenuse adjacent hypotenuse opposite adjacent hypotenuse opposite hypotenuse adjacent adjacent opposite cot   cos sin  http://fatmuscle.cjb.net 2 Maths Extension 1 – Trigonometry Exact Values & Triangles 30° 2 1 2 3 45° 60° 1 sin cos tan cos ec sec cot 0° 0 1 0 –– 1 –– 1 30° 60° 45° 1 2 3 2 1 2 1 2 1 2 3 2 1 3 1 3 2 2 3 2 2 3 2 2 1 3 1 sin 2   cos 2  =1 = 1  sin 2  = 1  cos 2  3 90° 1 0 –– 1 –– 0 180° 0 –1 0 –– –1 –– Trigonometric Identities cos  2 sin 2  = cosec2 2 cot 2  = cosec  – 1 1 = cosec2 – cot 2  1  cot 2  tan 2   1 = 2 tan  = 1 = sec 2  sec 2   1 sec 2   tan 2  http://fatmuscle.cjb.net 3 Maths Extension 1 – Trigonometry ASTC Rule 90° nd 2 Quadrant 1st Quadrant S A T C 180° 3rd Quadrant 0 360 4th Quadrant 270° First Quadrant: All positive sin  sin  cos cos tan  tan  + + + Second Quadrant: Sine positive sin 180    sin  cos180    – cos tan 180    – tan  + – – Third Quadrant: Tangent positive sin 180    – sin  cos180    – cos tan 180    tan  – – + Fourth Quadrant: Cosine positive sin 360    – sin  cos360    cos tan 360    – tan  – + – http://fatmuscle.cjb.net 4 Maths Extension 1 – Trigonometry Trigonometric Graphs Sine & Cosine Rules Sine Rule: a b c   sin A sin B sin C sin A sin B sin C   a b c OR A c b C B a Cosine Rule: a 2  b 2  c 2  2bc cos A A c b http://fatmuscle.cjb.net 5 a Maths Extension 1 – Trigonometry Area of a Triangle A  12 ab sin C  C is the angle  a & b are the two adjacent sides C b a http://fatmuscle.cjb.net 6 Maths Extension 1 – Trigonometry Trigonometric Equations  Check the domain eg. 0    360  Check degrees ( 0    360 ) or radians ( 0    2 )  If double angle, go 2 revolutions  If triple angle, go 3 revolutions, etc…  If half angles, go half or one revolution (safe side) Example 1 Solve sin θ = for 0    360 sin  = 12  = 30°, 150° 1 2 Example 2 Solve cos 2θ = for 0    360 cos 2 = 12 2 = 60°, 300°, 420°, 660°  = 30°, 150°, 210°, 330° 1 2 Example 3 Solve tan 2 = 1 for 0    360 tan 2 = 1  = 45°, 225° 2  = 90° Example 4 sin 2  cos  0 2sin  cos  cos cos 2 sin   1 =0 =0 cos =  12  = 210°, 330° =0  = 90°, 270° sin  Example 5 3sin   cos 2  2 3sin   1  2 sin 2   = –2 http://fatmuscle.cjb.net 7 Maths Extension 1 – Trigonometry 2 sin 2   3 sin   1 2sin   1sin   1 sin  =0 =0 =  12  = 210°, 330° = –1  = 270° sin  http://fatmuscle.cjb.net 8 Maths Extension 1 – Trigonometry Sums and Differences of angles sin     = sin  cos   cos sin  sin     = sin  cos   cos sin  cos    = cos cos   sin  sin  cos    = cos cos   sin  sin  tan     = tan     = tan   tan  1  tan  tan  tan   tan  1  tan  tan  Double Angles = 2sin  cos sin 2 cos 2 = cos 2   sin 2  = 1  2 sin 2  = 2 cos2   1 tan 2 = sin 2  = 12 1  cos 2  = 12 1  cos 2  cos 2  2 tan  1  2 tan 2  Triple Angles = 3sin   4 sin 3  sin 3 = 4 cos3   3 cos cos 3 tan 3 = Half Angles = sin  cos 3 tan   tan 3  1  3 tan 2  2 sin 2 cos 2 = cos2 2  sin 2 2 = 1  2 sin 2 2 http://fatmuscle.cjb.net 9 Maths Extension 1 – Trigonometry tan  = 2 cos 2 2  1 = 2 tan 2 1  2 tan 2 2 http://fatmuscle.cjb.net 10 Maths Extension 1 – Trigonometry Deriving the Triple Angles = sin 2    sin 3 = sin 2 cos  cos 2 sin  = 2 sin  cos cos  1  2 sin 2  sin  = 2 sin  cos 2   sin   2 sin 3  = 2 sin  1  sin 2    sin   2 sin 3  = 2 sin   2 sin 3   sin   2 sin 3  = 3sin   4 sin 3  cos 3 tan 3 = = = = = = = cos2    = tan 2    tan 2  tan  1  tan 2 tan  2 tan   tan  1 tan 2  = = = = _ Normal double angle_ Expand double angle_ Multiply_ Change sin 2   cos 2   1 _ Simplify_ cos 2 cos  sin 2 sin  2 cos   1cos  2 sin  cos sin  2 2 cos3   cos  2 sin 2  cos   2 cos3   cos  2 1  cos 2  cos 2 cos 2   cos  2 cos  2 cos3  4 cos3   3 cos  tan  1  2 1tan  tan 2  2 tan   tan   tan 3  1 tan 2  1 tan 2   2 tan 2  1 tan 2  3 3 tan   tan  1  3 tan 2  http://fatmuscle.cjb.net 11 Maths Extension 1 – Trigonometry T – Formulae Let t = tan 2 sin  = sin  = cos = tan  = 2 sin 2 cos 2  = 2t 1 t2 1 t2 1 t2 2t 1 t2 Using half angles _ Divide by “1”  2 sin 2 cos 2 cos 2 2  sin 2 2 sin 2   cos 2   1 = 2 sin 2 cos 2 cos 2 2 cos 2 2  sin 2 2 cos 2 2 Divide top and bottom by cos 2  = = 2 tan 2 1  tan 2 2 2t 1 t2 cos ’ cos = cos 2 2  sin 2 2 = cos 2 2  sin 2 2 cos 2 2  sin 2 2 =  sin cos 2 2 cos 2 2  sin 2 2 cos 2 2 = 1  tan 2 2 1  tan 2 2 = 1 t2 1 t2 cos 2  2 tan  cancel; = sin  cos = 2t 1 t 2 1 t 2 1 t 2 = 2t 1 t2 2  2 sin cos becomes tan http://fatmuscle.cjb.net 12 Maths Extension 1 – Trigonometry Subsidiary Angle Formula a sin x  b cos x a b = = = = R(sin x cos x  cos x sin x) R sin x cos x  R cos x sin x  a2 Rcos x = = R 2 cos 2 x R 2 sin 2 x  b2 a 2  b2 2 2 = sin x  cos x  1 R2 Rsin x tan   R  a 2  b2 a sin x  b cos x =C =C =C =C a sin x  b cos x a cos x  b sin x a cos x  b sin x b a R sin( x   ) R sin( x   ) R cos( x   ) R cos( x   ) Example 1 Find x. 3 sin x  cos x  1 R = 2 tan  3  12 = 4 =2  2 sin( x  30) sin( x  30) x  30 x = 1 3 = 30° =1 = 12 = 30°, 150° = 60°, 180° http://fatmuscle.cjb.net 13 Maths Extension 1 – Trigonometry General Solutions of Trigonometric Equations Then   n  (1)n sin   sin  cos  cos Then   2n   tan   tan  Then   n   Radians c = 180° 1° = c 180 Arcs, Sectors, Segments Arc Length l = r l θ r θ r Area of Sector A = 12 r 2 http://fatmuscle.cjb.net 14 Maths Extension 1 – Trigonometry Area of Segment A = 12 r 2   sin   Segment θ r http://fatmuscle.cjb.net 15 Maths Extension 1 – Trigonometry Trigonometric Limits sin x tan x lim = lim x 0 x 0 x x = lim cos x x0 =1 Differentiation of Trigonometric Functions d sin x  dx = cos x d sin f ( x) dx = f ' ( x) cos f ( x) d sin( ax  b)  dx = a cos( ax  b) d cos x  dx =  sin x d cos f ( x) dx =  f ' ( x) sin f ( x) d cos(ax  b) dx =  a sin( ax  b) d tan x  dx = sec 2 x d tan f ( x) dx = f ' ( x) sec 2 f ( x) d tan( ax  b)  dx = a sec 2 (ax  b) d sec x dx = sec x. tan x d cos ecx dx =  cot x. cos ecx =  cos ec 2 x d cot x dx http://fatmuscle.cjb.net 16 Maths Extension 1 – Trigonometry http://fatmuscle.cjb.net 17 Maths Extension 1 – Trigonometry Integration of Trigonometric Functions  cos ax dx = 1 sin ax  c a  sin ax dx =   sec = 1 tan ax  c a = x sin 1    c a = x  x cos 1    c __OR__  sin 1    c a a = 1  x tan 1    c a a  cos ec ax dx = 1  cot ax  c a  sec ax. tan ax dx = 1 sec ax  c a  cos ecax.cot ax dx = 1  cos ecax  c a  ax dx 1 a x 2 dx 2 1  a 2 a x 2 2 2 1  x2 dx dx 2 1 cos ax  c a http://fatmuscle.cjb.net 18 Maths Extension 1 – Trigonometry Integration of sin2x and cos2x = 2 cos 2 x  1 cos 2x = 2 cos 2 x cos 2x  1 1 cos 2 x  1 = cos 2 x 2 2 = 12  cos 2 x  1 dx  cos x dx = 12 12 sin 2 x  x   C = 14 sin 2 x  12 x  C  cos cos 2x 2 sin 2 x sin 2 x  sin 2 x dx 2 x dx = 1 4 sin 2 x  12 x  C x dx = 1 2 x  14 sin 2 x  C = 1  sin 2 x = 1 cos 2x = 12 1  cos 2 x  = 12  1  cos 2 x  dx = 12 x  12 sin 2 x   C = 12 x  14 sin 2 x  C  sin 2 http://fatmuscle.cjb.net 19 Maths Extension 1 – Trigonometry INVERSE TRIGNOMETRY Inverse Sin – Graph, Domain, Range, Properties y 1  x  1  2 x -2  2  2 y  2  2 sin 1 ( x)   sin 1 x Inverse Cos – Graph, Domain, Range, Properties y 1  x  1  0 y   2 x -1 0 1 cos 1 ( x)    cos 1 x Inverse Tan – Graph, Domain, Range, Properties y 2  All real x 2 x  2 -2 http://fatmuscle.cjb.net 20 Maths Extension 1 – Trigonometry   2 y  2 tan 1 ( x)   tan 1 x http://fatmuscle.cjb.net 21 Maths Extension 1 – Trigonometry Differentiation of Inverse Trigonometric Functions d sin 1 x  = 1 2 1 x dx  d sin 1 ax dx   d sin 1 f ( x) dx 1 =  a  x2 2 f ' ( x) = 1  [ f ( x)]2   =    =  =  d cos 1 x dx d cos 1 ax dx  d cos 1 f ( x) dx  1 1  x2 1 a2  x2 f ' ( x) 1  [ f ( x)]2   = 1 1  x2   = a a  x2 = f ' ( x) a  [ f ( x)]2 d tan 1 x dx d tan 1 ax dx  d tan 1 f ( x) dx  2 http://fatmuscle.cjb.net 22 Maths Extension 1 – Trigonometry Integration of Inverse Trigonometric Functions  1 a x 2 1  a dx 2 a2  x2 2 1  x2 dx dx = x sin 1    c a = x  x cos 1    c __OR__  sin 1    c a a = 1  x tan 1    c a a http://fatmuscle.cjb.net 23