Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
CHAPTER 12 12.1 1M v 1000 1k | A V O 990 1M 5k 1k 0. 5 vS vO vS iS or 59 . 9 dB vS 990 v S i 990 6 5 and i O | AI O 10 9. 9 x10 or 120 dB 1M 5k 1k iS 1000 A P A V A I 990 9. 9 x10 5 9. 8 x10 8 or 89 . 9 dB | v s 12.2 vO vS vs 5 k 1k 31 . 6 and A 5k 5k 1k 1k v O 10 V 1. 27 V Since R A V 7. 91 dissipated in R OUT V vO 5V 5. 05 mV A V 990 vO 7. 91 or 18 . 0 dB vS has the same value as R OUT is also 0 . 5 W. The power dissipated in R L, ID the power will be 2 PI = PI V 2ID 2R ID V S V 2S 2 2 R ID 8R ID 2 4 8 5000 where V S VO 7. 91 and V O 2 0. 5 W 1000 31 . 6 V 0. 4 mW . The total power dissipated in the amplifier is P = 500 mW + 0. 4 mW = 500 mW . 12.3 0. 99 mV 1mV 12.4 Io R ID R ID 4 . 95 M R ID 50 k 2 100 W 2 A and 50 I 2o R OUT 5 W or R 2 OUT 2. 5 12.5 v ID 12.6 vID 12.7 Av v O 10 V 0.1 mV | A 10 5 10 V 6 10 V requires A A 10 7 or 140 dB vO 15 V 15 V 15V 6 6 10 V requires A 15x10 | i 15 pA 6 15 V | A A 1M 10 R2 220 k 46.8 | 20log 46.8 33. 4 dB | R IN R 1 4.7 k | R OUT 0 R1 4.7k 1 12.8 Av R2 8200 9. 01 R1 910 V O 9.010.05 V 0.451V Is 12.9 A v 1 12.10 A v 1 | v o t 0.451 sin 4638t V V s 0.05 V = 54.9A | i s t 54.9 sin 4638t A R1 910 R2 680k 1 83.9 | 20log 83. 9 38.5 dB | R IN | R OUT 0 R1 8. 2k R2 8200 1 10.0 | V O 10. 00.05V 0.500V | v o t 0.500 sin9125 t V R1 910 12.11 vO R3 R 51k 51k v1 3 v 2 v1 v 2 51v1 25.5v 2 R1 R2 1k 2k v O t 510.01sin 3770t 25. 50. 04 sin 10000t v O t 0.510 sin 3770t 1.02 sin 10000t V and v - t 0. 12.12 a A nom 1 v R2 47k 1 262 | 20log262 = 48. 4 dB R1 0.18k R IN 10k | R OUT 0 b A max 1 v 47k1.1 47k0.9 min 320 | A v 1 215 0.18k0.9 0.18k1.1 A max A nom 320 262 v v 0.22 | nom Av 262 c Tolerances: + 22%, 18% d A min A nom 215 262 v v 0.18 nom Av 262 320 1. 49:1 215 (e) function count=c; c=0; for i=1:500, r1=180*(1+0.2*(rand-0.5)); r2=47000*(1+0.2*(rand-0.5)); a=1+r2/r1; anom=1+47000/180; if (a>=0.95*anom & a<=1.05*anom), c=c+1; end; end c Executing this function twenty times yields 44% . 12.13 10R 10 R v 11R 110 k | R1 1 R 10 k . i1 v 0 (a) Using Eq. 12.36: A V b R 2 2 v2 i2 v1 0 2 12.14 i TH v v vo R TH R but v- 0 because it is a virtual ground (v - v 0) vo | v o i THR | V O I THR | This circuit is known as a R current - to - voltage converter or transresistance amplifier. i TH 12.15 a A v R2 100k 5.00 | R IN R 1 20 k R1 20k b A v 1 c A v R2 100k 1 6.00 | R IN 27k 27 k R1 20k R2 0 0 | R IN R 1 33 k This is not a very useful circuit. R1 33k 12.16 The inverting terminal of the op-amp represents a virtual ground and a I O I DS V V EE 0 10 1 A. R 10 b Saturation requires VDS V GS V TN where VDS V DD V V DD and V GS V TN 2I DS Kn 21 2.83V 0.25 V DD 2.83 V. 2 c P R I 2 R 1 10 10W. So the resistor must dissipate 10 W. (A 15W resistor would provide a reasonable safety margin.) 12.17 The inverting terminal of the op-amp represents a virtual ground. (a ) I O I C F I E F V V EE 30 0 15 0. 484 A. 1 F R 31 30 (b) V O V V BE 0 V BE V BE V T ln IC IS 0.025 V ln 0.484 0.730V 10 13 (c) Forward - active region operation requires VCE V BE but V CE V CC V V CC Therefore VCC 0.730 V. (d) P R I 2 R 0.484 2 30 7.03 W. So the resistor must dissipate 7.03 W. (A 10W resistor would provide a reasonable safety margin.) P D = I C V CE I B V BE 0. 484 15 0. 484 0.730 7.27 W. 30 12.18 VS V VO V R1 VO sCV and V + V V O R KR R 1 KR 1 1 K Combining these expressions yields: A V s Vo 1 K , a non inverting integrator. Vs sRC 3 12.19 (a) Applying ideal op-amp assumption 1, the voltage at the top end of R is v1 and the voltage at the bottom end of R is v2. Applying op-amp assumption 2, the current io must also equal the current in R, and v v2 iO 1 R 0V 0V v 0 | R OUT X b i X R iX vO1 A 0 v O1 vX vO2 A 0 vO 2 vO2 0 A vX | v1 vO1 v X 1 A 1 A v1 v2 vX vX | R OUT 1 A R R iX 1 A R vO1 v X iX 12.20 (a) iO v5 vO v v | v5 v i R3 v 1 R 3 2v v1 since R 1 R 3 R R1 v v 2 vO 2 and v 5 v 2 v1 vO | i O iX v2 v1 v O v O v v1 2 R R (b) v X v5 vX vX v 0 | R OUT X R R iX v v1 i TH 2 R R TH An ideal current source! 12.21 (a) Note that voltages refer to the node numbers on the next page Using voltage division since i + 0, v2 v 4 6 4.99k 4. 99k 5. 00k 4. 99k 0. 5005v 4 2.997 V 4.99k 5.00k 4 v1 Since v id 0, v1 v2 and v 5 v1 5.01k 5k Solving for v 5 yields v 5 1.992 V 1.002v 4 v2 v 4 6 v4 io v5 v 4 199A 2x10 7 v4 10k v4 is unknown; let us assume 2x10 -7 v4 199 x10 6 A which requires v 4 995V. So for v4 100 V, which should almost always be true in transistor circuits, i O 199A. 4 For ZL = 10 k, v4 = 1.99 V, v2 = 3.99 V, v1 = 3.99 V, v5 = 3.99 V Note that v5 - v4 = 2 V = (6V - 4V) 12.21 (b) R OUT vX iX and i X vX v5 10k So we need to find iX, and hence v5, in terms of vX 5.00k 0.5005 v X 4.99k 5.00k v v5 v1 i 5. 01k v1 1 5.01k 2.002 v1 1. 002v x 5k v X v5 v X 1.002 v X 0. 002v X iX and R OUT 5 M ! A negative output resistance! 10k 10k 10k v1 v2 v X 12.22 Using ideal op-amp assumption 2, V S I SR 1 I L Z L , and using ideal op-amp assumption 1, the voltage across R2 must equal the voltage across R1 which requires R I 2 R 2 I SR1 or I 2 I S 1 . R2 R V S I SR 1 I S 1 1 Z L R 2 and Z IN R OUT iX vX iX vX iX Note, for the case of finite gain A, v v vO R OUT X where i X X iX R2 vX 1 A where vX vO vX vX 0 R2 R2 R OUT vX v O R VS R 1 1 1 Z L IS R 2 and v O v X A 1 A and R OUT R 2 1 A 10k 12.23 For ZL = 3.6 k, R IN 10k 3.6k1 49.6 k 1k 12.24 Applying op-amp assumption 1 to the circuit on the next page, the voltage at the top of R2 is vO2, and applying op-amp assumption 2, vS v O2 R1 R2 or vO2 v S R2 R1 Since the op-amp input currents are zero, and R v R i S , v O1 iR 2 iR 3 2 3 v S R1 R 1 R1 5 Alternatively, the voltage at the bottom of R2 is zero, so R R R R R vO1 1 3 vO2 1 3 2 v S 2 3 vS R 2 R 2 R1 R1 R1 12.25 R R 1 1 V O V REF 3.2 1.2 V 4R 8R 4 8 R R 1 1 V O V REF 3.2 1. 8 V 2R 16R 2 16 6 0000 0.000 V 0001 -0.200 V 0010 -0.400 V 0011 -0.600 V 0100 -0.800 V 0101 -1.00 V 0110 -1.20 V 0111 -1.40 V 1000 -1.60 V 1001 -1.80 V 1010 -2.00 V 1011 -2.20 V 1100 -2.40 V 1101 -2.60 V 1110 -2.80 V 1111 -3.00 V 12.26 Desire Ron ≤ 0.01(10 k) = 100 . V S 3.2 10 4 3.17 V 10 4 102 V TN 1 0.5 0.6 3.17 0.6 1.58 V 1 W R on K 'n V GS V TN V DS L 1 W 5x10 5 5 3.17 1.58 0.03 L W 909 L 100 12.27 Consider the error for each bit acting by itself: R 1 0 V REF 1 0 1 1 1 V REF V REF V REF 0 2 2 2 2 2R 1 1 R 1 0 V REF 2 V REF V REF 0 4 4 4R 1 2 R 1 0 V REF 0 3 V REF V REF 8 8 8R 1 3 R 1 0 V REF 4 V REF V REF 0 16R 1 16 16 4 Adding these together yields 0 1 0 2 0 3 0 4 V REF V REF V REF V REF 0.05V REF 2 4 8 16 15 0 1 2 3 4 0.05 16 2 4 8 16 Giving each term the same weight: 15 0 1% and 0 1. 07% | 1 1% and 1 2% 2 4% 3 8% 4 16% 16 2 12.28 An n-bit DAC requires (n+1) resistors. Ten bits requires 11 resistors. 210 R 210 or 1024:1 R 1 A wide range of resistor values is required but it could be done. For R = 1 k, 1024R = 1.024 M. 12.29 Taking successive Thévenin equivalent circuits at each ladder node yields: 12.30 V REF 0.3V | 16 V REF 0. 6V | 8 V REF 1.2V | 4 V REF 2. 4V 2 Combine amplifiers A & B; Combine amplifiers B & C 7 12.31 Av = 50, RIN = 24 k, ROUT = 0 12.32 12.33 (a) Driving the output of the circuit in Fig. 12.21 with a current source of value i X: i X iO i2 | i2 iO vX R1 R 2 v X Ai 2 R1 1 A vX RO RO i X vX 1 A vX RO R1 R 2 ; iO v X Av id RO where = and R OUT ; v id i 2 R 1 R1 R1 R 2 vX RO R 1 R 2 i X 1 A (b) This approach places two potentially unequal value voltage sources in parallel which is not permitted. 12.34 Assume i- << i2: i iX i1 i2 8 vX R ID 1 A 0.1V 48.0 pA 6 5 1 10 1 10 48 0.1V 1 47 vO 100 A and i i 2 R1 R 2 48k 12.35 2R 1 Setting v2 0, R IN1 R ID 1 A 500k1 4 x10 4 785 M 2R 1 49R1 RO 75 By symmetry , R IN2 R IN1 785 M | R OUT R OUT3 3.75 m 1 A 4x104 1 2 FGE 1 12.36 A 1 4 10 requires A 10,000 (80 dB) 1 A 1 A Op-amp parameters: RID = 500 k, RO = 35 , A = 50,000 Amplifier Requirements: AV = 200, RIN ≥ 200 M, ROUT ≤ 0.2 . 12.37 We must immediately discard the inverting amplifier case. RIN = R1 requires R1 ≥ 200 M which can be achieved, but then R2 must be 200 R1 ≥ 40 G which is out of the question (see values in Appendix C). So, working with the non-inverting amplifier: A V 200 R OUT R1 1 50000 and A = 250 1 R1 R 2 200 200 RO 35 0.14 meets the specification 1 A 250 R IN R ID 1 A 500k250 125M does not meet the requirements . So the specifications cannot be met using a single-stage amplifier built using the op-amp that was given to us. 12.38 The non-inverting amplifier is the only one that can hope to achieve both the required gain and input resistance (see Prob. 12.37): 1 10 4 A CL 200 and A 50 200 R IN R ID 1 A 1M51 51 M - too small R OUT RO 1 A 100 1.96 - too large 51 If the gain specification is met, the input and output resistance specifications will not be met. R A 12.39 The open circuit voltage is vth v s 2 . Checking the loop-gain: R1 1 A R 6.8k 110k A 5x10 4 2910 1 so vth v S 2 v S 16.2v S 6.8k 110k 6.8k R1 R th R OUT RO R 250 O 85. 9 m 1 A A 2910 12.40 The open circuit voltage is vth A v . Checking the loop-gain: 1 A s 9 R 0.39k 56k A 10 4 69.2 1 so v th v S 1 2 v S 1 145 v S 0.39k 56k 0.39k R 1 or more exactly: v th v S A 10 4 RO 200 vS 143 v S | R th R OUT 2. 85 1 A 1 69.2 1 A 70. 2 12.41 Applying the definition of fractional gain error, FGE FGE 1 A 1 A R 2 R 2 1 A R1 R 1 1 1 A 1 R 2 R1 A 1 A 2 2 1 A 1 A 1 A For A 1, FGE 1 A 2 1 A 1 2x10 5 1 1000 1 A A 1 1 2 1 1 A 1 A 2 which must be 0.01 2 0. 01 | Taking the positive sign, 2 0.005 and 0.25% 12.42 Using the results from problem 12.41: For A 1 A 4x10 4 1 800 1, so FGE 50 A 2 1 800 2 which must be 0.02 2 0.02 | Taking the positive sign, 2 0.01875 and 0.938% 12.43 One worst-case tolerance assignment is given below. The second is found by reversing the resistor values. 9. 995 v v v v 0.50025 0.49975 v ic | i = ic ic v ic 10.005 9. 995 9. 995k 9.995k 9.995k 0.50025 vO v i 10.005k v i 10. 005k 0.49975 vic v ic 10.005k 9. 995k v v ic vO 0.001v ic and A cm vO 0. 001 | The value of Adm 1 is not affected by the vic small tolerances. CMRR = Adm 1000 | CMRR dB 60 dB A cm 12.44 10 5 5. 01 5. 005V. The maximum equivalent input error is 2 V IC 5.005 0.500 mV, but the sign is unknown. Therefore the meter reading CMRR 10 4 may be anywhere in the range 9. 50 mV V meter 10.5 mV. V IC 12.45 v1 v 2 10 sin 120t V and v id v1 v 2 0.50 sin 5000t V 2 99k v v v v 0.09258 v v ic 0.90742 vic | i = ic ic v ic 10.1k 99k 9.9k 9.9k 9.9k 0.09258 vO v i 101k v i 101k 0.90742 v ic v ic 101k 9.9k v vO 0.037 v ic and A cm O 0.037 | The value of Adm 10 is not v ic v ic affected by the small tolerances. CMRR = A dm 270 - a paltry 48.6 dB A cm v O A dm v id Acm v ic 0.370 sin 120t 5.00 sin 5000t V 12.46 2k Setting v2 0, R IN1 R ID 1 A 2R IC 1M 1 7.5x10 4 2500M 852 M 2k 24k By symmetry , R IN2 R IN1 852 M | R OUT R OUT3 RO 100 2.67 m 1 A 1 75000 2 12.47 See figure on next page for labels. R R R V O V OS I B1R1 1 2 I B2 R 3 2 V OS I B1R 1 1 2 I B 2R 2 R 3 R 3 R 3 10 6 V O 0.001 10 7105 1 0.95x10 7106 .011.015 V 5 10 Worst case VO = -0.026 mV, Ideal output = 0 V. Error = -26 mV Yes R1 should be R2||R3 = 90.9 k. 12.48 v O A V v ID V OS | A V dv O 10 5 V 7,500 dv ID 2 0 mV When v O 0, v ID V OS and so V OS 0.667 mV. 12.49 11 12.50 For I B2 0: Since v+ must = v - = V OS , the current through C is iC t = V OS V dt V OS OS t R RC For V OS 0, i C t = I B 2 since v- v 0. 1 t 1 t I v O t iC t dt I B 2 dt B2 t | Summing these two results yields C 0 C 0 C V I Eq . (12.100): v O t V OS OS t B2 t | Note that vC 0 0 for both cases. RC C v O t V OS 12.51 40dB 100 1 R1 R 2 R1 R2 1 C t 1 V OS R t 0 i C t dt V OS C 0 R2 R2 or 99 | For bias current compensation, R1 R 2 10k R1 R1 R2 1M 10k | R 2 10k1 99 1. 00 M and R1 10.1k R2 99 1 R1 The nearest 5% values would be 1 M and 10 k. 12.52 v a v b 4.99 5.01 5V v dm va v b 4.99 5.01 0.02V 2 2 v v2 0.02V v2 v a 4.99V v 3 v b 5.01V i 32 3 10 4 A 200 200 vcm v1 v2 10 4 4900 4.99 0.49 4.50 V v4 v 3 10 4900 5.01 0.49 5.50V 4 v4 5.50 i 2 i 32 10 4 3.75x10 4 A 10.01k 9. 99k 20k 9. 99k v5 v6 v 4 2. 747V 10.01k 9. 99k v v5 4.50 2.747 i 1 i 32 1 10 4 75.5x10 4 A 9.99k 9.99k v v5 4.50 2.747 vO v 5 1 10.01k 2.747 10.01k 0.990 V 9.99k 9. 99k The common-mode and differential mode inputs to the differential subtractor are v v2 vcms 1 5.00V and vdms v1 v 2 0.100V . The subtractor outputs for the 2 common-mode and differential mode inputs are: 12 For the common - mode signal, v 5 v 6 5 9.99k 10.01k 9.99k 9.99k 5 5 v1 v 5 9. 99k 10.01k 9.99k 10.01k vOcm v 5 10.01k 5 9.99k 10.01k 9. 99k 9.99k .01 vOcm . 0100V and A cm .002 5 9. 99k For the differential mode signal, v5 v6 0.5 10.01k 9. 99k v v5 0. 5 v5 vOdm v 5 1 10. 01k v 5 10.01k 9. 99k 9.99k vOdm 1.00V and A dm 12.53 1 a Ideal V O 0.005 V 1. 00 A 50 CMRR = dm 25, 000 . 02 A cm 100k 0. 460V 1.1k A 10 4 0.005 V 0.001V 0.546 V 1 A 4 1.1 1 10 101.1 -0.460 -(-0.546) c Error = 0.187 or 18.7% -0.460 b V O 0.005 V 0.001V 12.54 Inverting Amplifier: v O A V v S 6.2v S as long as v O 10V as constrained by the op- amp power supply voltages (a ) V O 6.2 1 = -6.2V, feedback loop is working and V - 0 (b) V O 6. 23 = +18 V; V O saturates at VO 10V The feedback loop is broken since the open- loop gain is now 0. (The output voltage does not change when the input changes so = A 0) By superposition, V 3 6.2k 1k 10 1.19V 7.2k 10k 12.55 Non inverting Amplifier: v O A V v S 40v S as long as v O 15 V (a ) V O 40 0.25V = +10V, feedback loop is working and VID 0 (b) V O 400.5V = 20V; V O saturates at VO 15 V The feedback loop is broken since the open- loop gain is now 0. (The output voltage does not change when the input changes so = A 0) V ID V V 0.5V 15 1k 0.125V. 1k 39k 12.56 13 i O i L i 2 and i O 1.5mA. The output voltage requirement gives i L which leaves 0.500mA as the maximum value of i2 . i 2 The closed - loop gain of 40db (A V =100) requires 10V gives R1 R 2 10V 1.00mA 10k R 1 R 2 20k. R2 99. R1 The closest ratio from the resistor tables appears to be R2 100 which is within 1% R1 of the desired ratio. (This is close enough since we are using5% resistors.) There are many many choices that meet both R2 100 and R1 R 2 20k. R1 However, the choice, R1 = 200 and R 2 20k is not acceptable because its minimum value does not meet the requirements : 20. 2k1 0.05 19.2k. The smallest acceptable pair is R 1 = 220 and R 2 22k. 12.57 15V 3 mA so i2 1 mA 5k v 15 i2 O 1 mA requires R 2 15k R2 .001 To account for the resistor tolerance, 0.95R2 15k requires R2 15.8k . For AV = 46 dB = 200, R2 = 200 R1, and one acceptable resistor pair would be R1 = 1 k and R2 = 20 k. Many acceptable choices exist. An input resistance constraint might set a lower limit on R 1. iO iL i2 4mA and iL 12.58 The maximum base current will be 5 mA, and the maximum emitter current will be I E = (F+1)IB = 51(5mA) = 255 mA. Since IE = 10V/R, R ≤ 10V/0.255A = 39.2 . 12.59 Referring to the figure used in the solution to problem 12.57: 10V 10 V 2.5 mA and i L 2 mA so i 2 0. 5 mA 4k 5k 10V R R2 20k A V 46dB 2 200 0.5mA R1 iO iL i2 One possible choice would be R2 = 20 k and R1 - 100 . However, the op-amp would not be able to supply enough output current if tolerances are take into acount. Better choices would be R2 = 22 k and R1 - 110 or R2 = 200 k and R1 - 1 k which would give the amplifier a much higher input resistance. (b) V above. 14 v o max 200 10V 50 mV 200 (c) RIN = R1 = 110 and 1 k for the two designs given 12.60 Using the expressions in Table12. 4: 5 10 24k 1 240k 11 First stage: = = | A V1 10.0 5 24k 240k 11 24k 10 1 11 240k 100 R IN 24k 500k 24. 0 k | R OUT 11. 0 m 1 10 5 105 1 11 105 10k 1 50k 6 Second stage: = = | A V1 5.00 10k 50k 6 10k 10 5 1 6 240k 100 R IN 10k 500k 5 10.0 k | R OUT 5 6.00 m 1 10 10 1 6 Overall amplifier: 10k A V 10.0 5.00 50. 0 | R IN 24. 0 k | R OUT 6.00 m 10.0k 11.0m For all practical purposes ,the numbers the same. R OUT 6.00 m is a good approximation of 0. 12.61 Use the expressions in Table12.4. All three amplifier stages are the same. 5 10 2k 1 40k 21 20. 0 = = | A V1 5 2k 40k 21 2k 10 1 21 40k 200 R IN 2k 250k 5 2. 00 k | R OUT 5 42.0 m 1 10 10 1 21 2k 2k For the overall amplifier: A V 20.0 20.0 20.0 8000 2k 42. 0m 2k 42.0m R IN 2.00 k | R OUT 42.0 m | For all practical purposes ,the numbers the same. R OUT 42.0 m is a good approximation of 0. 12.62 15 50 2 5000 < 50 3 | Three stages will be required to keep the gain of each stage 50. However, the input and output resistance requirements could further constrain the gains and must be checked as well. A For R OUT 85 = 10 20 1.778 x 10 4 RO 100 1 : 0.1 A 999 0. 0562 17.8. 1 A 1 + A For R IN R ID 1 A 2R IC: 1M1 A 2G 10M A 9 1 1976 17.8 50 50 5000 so three stages is still sufficient. 12.63 VS VO 12.64 A V s A nom V f nom H f min H 12.65 R SC R1 R 2 1 R1 SCR 2 1R 1 V VO | A V s O 1 2 R2 V S R1 SCR 2 1 SCR 2 1R 1 R 2 SC R1 1 R2 SC R2 1 R 1 sCR 2 1 A V 0 R2 R1 fH 1 2CR 2 330k 330k1.1 330k0. 9 33 A max 40.3 A max 27.0 V V 10k 10k0.9 10k1.1 2 10 1 10 3.3x10 5 4. 83kHz f max H 1 2 10 10 1.2 3.3x10 5 1.1 1 2 10 10 0.53.3x10 5 0.9 10.7kHz 3.65kHz 60db / decade requires 3 poles 3(-20db / decade). Using three identical amplifiers: A V 3 1000 10 and f H1 R 2C 1 2 39.2x10 3 4.06x10 6 f H3 1 23 1.96 20kHz 39. 2kHz. 1 s. One possible choice would be C = 200 pF, R 2 20 k and R1 1 k giving A V 10 and f H 39.8 kHz. 12.66 As T RO | T A o B | Z OUT s B 1 A s Z OUT R O 16 s B RO s B 1 A o 1 A o RO s B RO T s B T 1 s B s s 1 B RO B s 1 Ao 1 s 1 B 1 A o T 1 12.67 Using MATLAB: b=1/11; ro=100; wt=2*pi*1e6; wb=wt/1e5; n=ro*[1 wb]; d=[1 b*wt];w=logspace(0,7); r=freqs(n,d,w); mag=abs(r); phase=angle(r)*180/pi; subplot(212);semilogx(w,phase) subplot(211);loglog(w,mag) 12.68 Z IN R 1 R ID s B R2 R2 R1 R ID R 1 R ID R 2 T 1 A s s B T 1 s B R IDR 2 Z IN R 1 s B s B T s B R ID R 2 R1 R IDR 2 s B R ID s B T R 2 s B s B T Z IN s R2 s R ID R 2 B 1 R ID 1 1 A o B B R1 R1 R2 s R ID R 2 R ID B 1 A o R 2 B sR ID R 2 R ID 1 R2 1 A 1 A o B O R ID 1 A o Z IN R 2 R 1 R ID 1 Ao 1 s 1 B s R ID R 2 B 1 A O R R 2 ID 1 A o 12.69 Using MATLAB: n1=1e6; d1=[1 2000]; n2=1e6; d2=[1 4000]; n3=1e12; d3=[1 6000 8e6]; w=logspace(2,5); [m1,p1,w]=bode(n1,d1,w); [m2,p2,w]=bode(n2,d2,w); [m3,p3,w]=bode(n3,d3,w); subplot(211) loglog(w,m1,w,m2,w,m3) subplot(212) semilogx(w,p1,w,p2,w,p3) 12.70 17 AV Z 2 A Z1 1 A A V s A V s = Z1 Z1 Z 2 A = T s + o Z1 R1 Z2 R2 sCR 2 1 R2 T R1 R R 2 s R 2C s 1 2 R 2 Co T o 1 2 T R 1 R 1 3.653x1013 s 2 3.142x10 7 s 1.916 x1012 Using MATLAB: bode(-3.653e13,[1 3.142e7 1.916e12]) 12.71 V s V s 1 a S sCV O s | A V s O which is the transfer function of an integrator R V S s sRC b Generalizing Eq. 12.119: A V s = R1 1 R1 sC A V s A V s sCR T | A s sCR 1 s B Z 2 A s 1 Z1 | Z2 | Z1 R 1 | = Z1 1 As sC Z1 Z 2 T sRC sRC 1 s B sRC 1 | A V s T sRC sRC 1 sRC 1 s B sRC 1 1 sRC T T sRC s B sRC 1 sRC T s B sRC 1 sRC T T RC s 2 s B T T T RC RC 1 B B s T s RC s T s A 1RC RC RC T o using dominant root factorization where it is assumed T B and T 12.72 18 wrc=1/(1e4*470e-12); wt=2*pi*5e6; wb=2*pi*50; n=wt*wrc; d=[1 wt+wb+wrc wb*wrc]; bode(n,d) 1 . RC 12.73 20dB A V 10 C R2 R1 R IN R 1 20 k R 2 10R 1 200 k 1 1 796 pF 820 pF using values in Appendix C 2f H R 2 2 1000 200k 12.74 2k 1 105 | A 4760 1 2k 40k 21 21 (a ) A V R2 40k 3x10 6 Hz 20 | f H f T 143kHz R1 2k 21 3 (b) A V 20 8000 78dB | f H3 0.51f H 72.9kHz 12.75 The table below follows the approach used in Table 12.8. required gain = A V 85 10 20 The only change is the 4 1.778 x 10 . Cascade of Identical Non-Inverting Amplifiers # of Stages 1 2 3 4 5 6 7 8 9 10 11 12 AV(0) Gain per Stage 1/ FH Single Stage 2.00E+04 1.41E+02 2.71E+01 1.19E+01 7.25E+00 5.21E+00 4.12E+00 3.45E+00 3.01E+00 2.69E+00 2.46E+00 2.28E+00 5.00E+01 7.07E+03 3.68E+04 8.41E+04 1.38E+05 1.92E+05 2.43E+05 2.90E+05 3.33E+05 3.71E+05 4.06E+05 4.38E+05 FH N Stages RIN ROUT 5.000E+01 4.551E+03 1.878E+04 3.658E+04 5.320E+04 6.717E+04 7.839E+04 8.724E+04 9.415E+04 9.951E+04 1.037E+05 1.068E+05 6.00E+09 7.08E+11 3.69E+12 8.41E+12 1.38E+13 1.92E+13 2.43E+13 2.90E+13 3.33E+13 3.71E+13 4.06E+13 4.38E+13 8.33E+00 7.06E-02 1.36E-02 5.95E-03 3.62E-03 2.60E-03 2.06E-03 1.72E-03 1.50E-03 1.35E-03 1.23E-03 1.14E-03 x FT We see from the spreadsheet that a cascade of seven identical stages is required to achieve the bandwidth specification. Fortuitously, it also meets the input and output resistance specs. For the non-inverting amplifier cascade: AV 1 R2 R 4.12 2 3.12 R1 R1 A similar spreadsheet for the cascade of identical inverting amplifiers indicates that it is impossible to meet the bandwidth requirement. 19 12.76 a From Problem 12.75, A V 1 R 2 4.12 R 2 3.12 | Exploring the 5% resistor R1 R1 tables, we find R 2 62k and R 1 20k yields R2 3.10 as a reasonable pair. R1 7 The nominal gain of the cascade is then AV = 4.10 = 1.948 x 10 4 . A V = 86db 1dB 1.778 x 10 4 A V 2. 239 x 10 4 and the gain is well within this range. Many amplifiers will probably fail due to tolerances with 5% resistors. A Monte Carlo analysis would tell us. If we resort to 1% resistors to limit the tolerance spread, R 2 30.9 k and R1 10. 0 k is one of many possible pairs. b For R 2 62k and R1 20k, = 1 5x10 6 | f H1 f T 1.22 MHz 4.1 4.1 1 f H 1. 22MHz 2 7 1 394 kHz 12.77 Two stages - See problem 12.78 12.78 One possibility: Use a cascade of two non-inverting amplifiers, and shunt the input of the first amplifier to define the input resistance. 60db A V 1000 | A single - stage amplifier with a gain of 1000 would have a bandwidth of only 5 kHz using this op - amp. Two stages should be sufficient if RIN and R OUT can also be met. A design with f H2 f H1will be tried. First stage: Non - inverting with bandwidth of 20 kHz 1 = f H1 20kHz 0. 004 fT 5MHz A V1 1 250 A V2 4 2 0.25 f H2 1.25MHz 1 Since f H2 f H1 , f H f H1 20kHz. A o 85dB 17800 R O2 100 Checking R OUT 0. 0225 which is ok. 1 A o 2 1 17800 0.25 Choosing resistors from the Appendix, a possible set is Amplifier 1: R 1 1. 2k, R 2 300k and shunt the input with R3 = 27k Amplifier 2: R 1 3. 3k, R 2 10k Checking gain: A V 12.79 20 17800 17800 1 251 17800 17800 997.5 60.0dB 1 4.03 function sg=Prob79(tol); sg=0; for j=1:10 ao=100000; ft=1e6*sqrt(2^(1/6)-1); for i=1:500, r1=22000*(1+2*tol*(rand-0.5));r2=130000*(1+2*tol*(rand-0.5)); beta=r1/(r1+r2);g1=ao/(1+ao*beta); b1=beta*ft; r1=22000*(1+2*tol*(rand-0.5));r2=130000*(1+2*tol*(rand-0.5)); beta=r1/(r1+r2);g2=ao/(1+ao*beta); b2=beta*ft; r1=22000*(1+2*tol*(rand-0.5));r2=130000*(1+2*tol*(rand-0.5)); beta=r1/(r1+r2);g3=ao/(1+ao*beta); b3=beta*ft; r1=22000*(1+2*tol*(rand-0.5));r2=130000*(1+2*tol*(rand-0.5)); beta=r1/(r1+r2);g4=ao/(1+ao*beta); b4=beta*ft; r1=22000*(1+2*tol*(rand-0.5));r2=130000*(1+2*tol*(rand-0.5)); beta=r1/(r1+r2);g5=ao/(1+ao*beta); b5=beta*ft; r1=22000*(1+2*tol*(rand-0.5));r2=130000*(1+2*tol*(rand-0.5)); beta=r1/(r1+r2);g6=ao/(1+ao*beta); b6=beta*ft; gain(i)=g1*g2*g3*g4*g5*g6; bw(i)=(b1+b2+b3+b4+b5+b6)/6; end; sg=sg+sum(gain<1e5 | bw<5e4); end; end (a) For 5000 test cases with tol = 0.05, 33.5% of the amplifiers failed to meet either the gain or bandwith requirement. (b) For 10000 test cases with tol = 0.015, 0.1% of the amplifiers failed to meet either the gain or bandwith requirement. 12.80 N 1 1 f a G 1 | f H1 f T | f H T1 GN GN Z Z ln 2 For 2 e Setting 2Z Z and G e Z ln G d f H : dz f T d f H Z 1 Z 0 G 2 1 dz f T 2 1 2 2Z 1 2N 1 f 1| H fT 1 GZ 2 Z 1 2 1 2 2Z 2N 1 1 GN 2 Z G 1 2 1 Z for Z = 1 ln 2 2Z 1 2 GZ ln G G 2Z 1 Z Z Z Z ln 2 2 1 2 G ln G 0 2 ln 2 2 2 1 ln G 2 ln G 2 ln G Z ln 2 ln ln 2 2 ln G ln 2 2 ln G ln G ln ln G ln 2 Z N opt ln 2 b N opt ln 2 5 ln10 ln 5 ln10 ln 2 1 N ln 2 ln G ln ln G ln 2 22.7 which agrees with the spreadsheet in Table12.8 f Hopt 106.0 kHz 12.81 21 22k 1 5x104 A 7240 1 22k 130k 6.91 6.91 R 130k (a ) A nom 1 2 1 6.91 V R1 22k nom max AV nom fH 12.82 1 R2 130k1. 05 R 130k0.95 min 1 7.53 | A V 1 2 1 6.35 R1 22k0.95 R1 22k1. 05 nom f T 10 6 Hz 10 6 Hz 10 6 Hz max min 145 kHz | f H 157 kHz | f H 133 kHz 6.91 6.36 7.53 function [gain,bw]=Prob82a ao=50000; ft=1e6; for i=1:500, r1=22000*(1+0.1*(rand-0.5)); r2=130000*(1+0.1*(rand-0.5)); beta=r1/(r1+r2); gain(i)=ao/(1+ao*beta); bw(i)=beta*ft; end; end [gain,bw]=prob82a; mean(gain) ans = 6.9140 std(gain) ans = 0.2339 mean(bw) ans = 1.4478e+05 std(bw) ans = 4.8969e+03 Three sigma limits: 6.21 ≤ AV ≤ 7.62 130 kHz ≤ BW ≤ 159 kHz function [gain,bw]=Prob82b for i=1:500, ao=100000*(1+1.0*(rand-0.5)); ft=2e6*(1+1.0*(rand-0.5)); r1=22000*(1+0.1*(rand-0.5)); r2=130000*(1+0.1*(rand-0.5)); beta=r1/(r1+r2); gain(i)=ao/(1+ao*beta); bw(i)=beta*ft; end; end [gain,bw]=prob82b; mean(gain) ans = 6.9201 std(gain) ans = 0.2414 mean(bw) ans = 2.8925e+05 std(bw) ans = 8.5536e+04 Note that the bandwidth is essentially a uniform distribution. 3: 6.20 ≤ AV ≤ 7.64 98.9% of the values fall between: 146 kHz ≤ BW ≤ 439 kHz 12.83 SR V O 15 V 2 2x10 4 Hz 1.89x10 6 12.84 f 22 SR 10V 1 159 kHz 2V o 10 6 s 20V V V or 1.89 s s 12.85 The negative transistion requires the largest slew rate : SR V 20V V 10 t 2s s 12.86 a For the circuit in Fig. 12.44: R ID 250k | R =1k an arbitrary choice B = 2 5x10 8x10 4 6 =125 | C= 1 1 2.55F | R O 50 | A o 80,000 BR 125 1000 b Add a resistor from each input terminal to ground of value 2R IC 1G (See Prob. 12.87) 12.87 Two possibilities: 12.88 1: C = 1 1 1.592 F setting R1 arbitrarily to 100. 1R1 2 103 100 2: R 2 = 1 1 1 Using the same value of C. 2 C 2 10 5 1.592 F 23 12.89 12.90 *PROBLEM 12.89 - Six-Stage Amplifier VS 1 0 AC 1 XA1 1 2 0 AMP XA2 2 3 0 AMP XA3 3 4 0 AMP XA4 4 5 0 AMP XA5 5 6 0 AMP XA6 6 7 0 AMP .SUBCKT AMP 1 2 7 RID 1 3 1E9 RO 6 2 50 E2 6 7 5 7 1E5 E1 4 7 1 3 1 R 4 5 1K C 5 7 15.915UF R2 2 3 130K R1 3 7 22K .ENDS .TF V(7) VS .AC DEC 40 1 1MEG .PRINT AC V(1) V(2) V(3) V(4) V(5) V(6) V(7) .PROBE V(1) V(2) V(3) V(4) V(5) V(6) V(7) .END *PROBLEM 12.90 - Six Stage Amplifier VS 1 0 AC 1 XA1 1 2 0 AMP XA2 2 3 0 AMP XA3 3 4 0 AMP XA4 4 5 0 AMP XA5 5 6 0 AMP XA6 6 7 0 AMP .SUBCKT AMP 1 2 8 RID 1 3 1E9 RO 7 2 50 E2 7 8 6 8 1E5 *Two dummy loops provide separate control of Gain & BW tolerances G1 8 4 1 3 .001 R11 4 8 RG 1000 E1 5 8 4 8 1 RC 5 6 1000 C 6 8 CC 15.915UF * R2 2 3 RR 130K R1 3 8 RR 22K .ENDS .MODEL RR RES (R=1 DEV=5%) .MODEL RG RES (R=1 DEV=50%) .MODEL CC CAP (C=1 DEV=50%) .AC DEC 20 1E3 1E6 .PROBE V(7) .PRINT AC V(7) .MC 1000 AC V(7) MAX OUTPUT(EVERY 20) *.MC 1000 AC V(7) MAX OUTPUT(RUNS 77 573 597 777) .END Maximum gain = 103 dB; Minimum gain = 98.5 dB Maximum Bandwidth = 65 kHz; Minimum bandwidth = 38 kHz (These are approximate.) 24 12.91 A o 200,000 | R ID 1012 | R O unspecified | R =1 k C 2 2.5x106 1 1 | o T 25 | C 12.7 F 5 o R Ao 2x10 25 1000 12.92 A OL 15000 CMRR 80dB PSRR 80dB V OS 13mV I B 8nA I OS 2nA 12 Power supply voltages: 18 V R ID lower bound not given (10 typical ) SR lower bound not given (50 V / s typical ) GBW lower bound not given (20 MHz typical ) 12.93 a C 2 C 0.005F | C1 2C 0. 01F | R = For Q = 1 2 : A V s 2 2o 2 s 2o s o 1 2 O C 1 1.13k 2 40000 0.005F | A 0 1 | A j o 1 2 H o! | f H 20kHz C b For f O = 40kHz: C ' : C1' 0. 005F | C '2 0. 0025F | R 1.13k 2 12.94 (a) (b) r1=1130; r2=1130; c1=1e-8; c2=5e-9; wo=1/sqrt(r1*r2*c1*c2) n=wo*wo; d=[1 2/(r1*c1) wo*wo]; bode(n,d) *PROBLEM 12.94 - Low-pass Filter VS 1 0 AC 1 R1 1 2 1.125K R2 2 3 1.125K C1 2 6 0.01UF C2 3 0 0.005UF ISEN 3 6 DC 0 EC 4 0 3 6 1 RC 4 5 1K CC 5 0 15.915UF E1 6 0 5 0 100000 .AC DEC 40 1 1MEG .PRINT AC IM(VS) IP(VS) VDB(6) VP(6) .PROBE I(VS) V(6) .END (c) The magnitude response is very similar to the ideal case. However, note the excess phase shift as one approaches the fT of the amplifier. In this case, it is not causing a problem, but for higher gain filters the situation would be different. 12.95 25 Using Eq . 12.134: V 1 s G1 V S s sC 2 G 2 s C1C 2 sC 2 G1 G2 G1G 2 2 | I S G1 V S V1 2 G1 sC 2 G2 s C1C 2 sC 2 G2 I S G1 V S 1 2 G1V S 2 s C1C 2 sC 2 G1 G2 G1G 2 s C1C2 sC 2 G1 G 2 G1G2 2 2 s s o o s2 C1C 2 sC2 G1 G2 G1G 2 VS Q Z S s R1 R1 IS s 2C1C 2 sC 2 G2 1 ss R 2 C1 2o 26 1 | R1R 2C1C 2 o 1 1 1 Q C1 R 1 R 2 12.96 r1=2260; r2=2260; c1=2e-8; c2=1e-8; wsq=1/(r1*r2*c1*c2); n=r1*[1 2/(r1*c1) wsq]; d=[1 1/(r1*c1) 0]; bode(n,d) 12.97 G1V S sC 1 G1 G2 V1 s KC1 G2 V 2 0 G 2 V1 sC 2 G 2 V 2 V O KV 2 | O VO K 2 VS s R 1R 2 C1C 2 s R 1C1 1 K C 2 R1 R 2 1 1 R1 R 2C1C 2 | Q 3O 1 K 1 R 2 C 2 R 1 R 2 C1 For R1 R 2 R and C1 C 2 C, O 1 RC Q 2O 3K SQ K K 3 K 12.98 o 1 R o R | SR o 1 1 1 R 1R 2 C1C 2 o R1 o S R o1 3 1 1 R R 1 2 1 R 2 C1C 2 2 o 1 o 1 2 2 R1 1 1 | By symmetry , S Co1 2 2 12.99 a For C 1 C C2 : o SQo 1 1 | Q= C R 1R 2 2 R2 1 | o R1 2R1CQ Q o Q o Q 1 o 1 b S Q 1 o Q o 2R 1CQ 2 o Q 12.100 As noted in Example 12.11, the maximally flat response corresponds to Q = For Q = 1 2 . 2o 1 1 : A V s 2 | A 0 1 | A j o H o | f H 1kHz 2 2 s 2o s o 2 R 1 R R 2 and C1 2C 2 2C yields Q = 1 2 | o 1 2R 2 C2 1 2RC 1 1.125 x 10 4 | For C = 0.001 F, R =112.5 k. The 2 2 1000 nearest 5% value is 110 k. The nearest1% value is 113 k. Using 1% values, RC C1 0. 002 F | C 2 0.001 F | R1 R 2 113 k 12.101 27 Using the R 1 R 2 R and C1 C2 C case, A HP s K o 1 RC | Q= 1 3 K s2 s2 s o 2o Q Q 1 K 2 | A HP s 2 | s2 2 2 s s o o We need to find the relationship between L and o. 2 2 2 2 L 2 L 2 2 2 o L L o 2o 4o 4 4o 2 2 2 4o 22o 2L 4L 2o 2L 2 4L | 4L 2o 2L 4o 0 2 L o 5 1 | L 0.7862o | 2 20kHz 0.7862o 2 1 6. 256x10 6 | For C = 270 pF, R = 23.17 k o The nearest1% resistor value is 23.2 k. o 1.599x105 | RC Final design: C1 C2 270 pF | R 1 R 2 23. 2 k 12.102 a Q = 1 2 R 2 1 200k 10 = | fo R1 2 1k 2 1 3 5 2 10 2x10 2.2x10 10 2 51.2 kHz fo 7.23 kHz Q 3.3k b K M 3.3 | R 1 3. 31k 3.3 k | R 2 3.3200k 660 k 1k 220pF C1 C 2 66.7 pF 3.3 2f 220pF 110 pF | R 1 1 k | R 2 200 k b K F o 2 | C1 C2 fo 2 BW 28 12.103 (a ) BW f o 1000Hz 1 200 Hz | C 1 C 2 C | Q = Q 5 2 Choose R1 1 k R 2 100 k | C = o 1 o R1R 2 R2 R 5 2 100 R1 R1 1 2 10 3 10 4 0.0159 F 1 : Checking the nearest standard values: 10R1C C = 0.015 F R 1 1.06k - not good; C = 0.01 F R1 1.6 k | R 2 160 k (b) C ' 12.104 C 0. 004 F | R 1 1.6 k | R 2 160 k 2. 25 r1=1000; r2=2e5; c=2.2e-10; wo=1/sqrt(r1*r2*c*c); q=sqrt(r2/r1)/2; n=[-2*q*wo 0]; d=[1 wo/q wo*wo]; w=logspace(4,7,300); bode(n,d,w) *PROBLEM 12.104 - Band-pass Filter VS 1 0 AC 1 R1 1 2 1K R2 3 6 200K C1 2 6 220PF C2 2 3 220PF EC 4 0 0 3 1 RC 4 5 1K CC 5 0 7.977UF E1 6 0 5 0 50120 .AC DEC 500 1K 1MEG .PRINT AC VDB(6) VP(6) .PROBE V(6) .END SPICE yields: fo = 38.9 kHz, Q = 8, Center frequency gain = 38.8 dB. These values are off due to the finite bandwidth of the op-amp and its excess phase shift at the center frequency of the filter. 12.105 a BW o 1 rad rad | L 0. 833 | H 1.167 Q 3 s s 1 BW ' BW 2 2 1 0. 215 C1 C 2 C: o rad rad 1 | 'o o 1 | Q' = = 4.65 s s 0.215 1 1 | Q= C R1R 2 2 2 R2 1 | 2Qo R1 R1C 2 2Qo 6s b A s s s2 s o 1 s2 1 Q 3 29 12.106 30 n=conv([-6 0],[-6,0]); d=conv([1 1/3 1],[1 1/3 1]); bode(n,d) 12.107 Using normalized frequency: 5 kHz O 1 and 6 kHz O 1.1 2 10s 12s 120s As 2 s 0.2s 1s 2 0.24s 1.44 s 4 0.44s 3 2. 484s2 0.528s 1.44 At the new center frequency s = j O , 0.443O 0.528 O 0 O 1. 095 and Aj O 1429 63.1 dB The bandwidth points can be found using MATLAB: w=linspace(.9,1.5,250); [m,p,w]=bode([120 0 0],[1 .44 2.484 .528 1.44],w); 20*log10(max(m)) ans = 63.098 ((20*log10(a))>60.098).*(w.'); From this last vector one can easily find: o = 1.095 -> 5.48 kHz, L = 0.970 -> 4.85 kHz, H = 1.237-> 6.19 kHz, BW = 1.34 kHz, Q = 4.09 12.108 w1=2*pi*5000; q1=5; w2=2*pi*6000; q2=5; n1=[-2*q1*w1 0]; d1=[1 w1/q1 w1*w1]; n2=[-2*q2*w2 0]; d2=[1 w2/q2 w2*w2]; n=conv(n1,n2); d=conv(d1,d2); w=logspace(4,5,100); bode(n,d,w) 12.109 Using A V 20 dB at the center frequency: R IN R 1 10 k | 10 = KQ = R 2 100 k | K = 12.110 R2 R1 10 1 1 2 | R = KR 1 20 k | C = 0. 0133 F. Q oR 2 600Hz 20k Q is set independently of C in the Tow-Thomas biquad. Q SC 0 . 12.111 12.112 12.113 12.114 In the first printing, the problem should state that there are 0.1pF stray capacitances from each end of C1 to ground. CGS and CGD should be ignored. 31 a In this case, the sampling capacitor has an effective value of1.1pF. AV 1.1pF 1.0pF 5.5 whereas the ideal gain is AV 5 | Gain error 0.5 or 10% 0.2pF 0.2pF b The stray insensitive integrator eliminates the effects of the stray capacitances . Therefore AV 5 and there is no gain error. 12.115 Note: It is very important to observe and discuss the effects of clock feedthrough in the simulation results in both parts of this problem. *PROBLEM 12.115(a) - SC Integrator VCLK 2 0 DC 0 PULSE(0 5 0U 0.5US 0.5US 4US 10U) VNCLK 4 0 DC 5 PULSE(0 5 5U 0.5US 0.5US 4US 10U) VS 1 0 DC 1 M1 3 2 1 0 MOSN W=4U L=2U AS=16P AD=16P C1 3 0 1PF *Stray capacitance CS CS 3 0 0.1PF M2 3 4 5 0 MOSN W=4U L=2U AS=16P AD=16P C2 5 6 0.2PF E1 6 0 0 5 1E5 RID 5 0 1MEG RL 6 0 10K .OPTIONS VNTOL=1E-9 RELTOL=1E-6 .OP .TRAN 0.025U 20U .MODEL MOSN NMOS KP=5E-5 VTO=0.91 GAMMA=0.99 +LAMBDA=.02 TOX=41.5N +CGSO=330P CGDO=330P CJ=3.9E-4 CJSW=510P .PROBE V(1) V(2) V(3) V(4) V(5) V(6) .PRINT TRAN V(3) V(6) .END Note that the output in part (a) is really only valid during Phase-1 times because of clock feedthrough. *PROBLEM 12.115(b) - Stray Insensitive SC Integrator VCLK 2 0 DC 0 PULSE(0 5 0U 0.5US 0.5US 4US 10U) VNCLK 4 0 DC 5 PULSE(0 5 5U 0.5US 0.5US 4US 10U) VS 1 0 DC 1 M1 3 2 1 0 MOSN W=4U L=2U M3 7 2 5 0 MOSN W=4U L=2U C1 3 7 1PF *Stray capacitances CS1 and CS2 CS1 3 0 0.1PF CS2 7 0 0.1PF M2 3 4 0 0 MOSN W=4U L=2U M4 7 4 0 0 MOSN W=4U L=2U C2 5 6 0.2PF E1 6 0 0 5 1E5 RID 5 0 1MEG RL 6 0 10K .OPTIONS VNTOL=1E-9 RELTOL=1E-6 .OP .TRAN 0.025U 30U 32 .MODEL MOSN NMOS KP=5E-5 VTO=0.91 GAMMA=0.99 +LAMBDA=.02 TOX=41.5N +CGSO=330P CGDO=330P CJ=3.9E-4 CJSW=510P .PROBE V(1) V(2) V(3) V(4) V(5) V(6) .PRINT TRAN V(3) V(6) .END Note that the output in part (b) is really only valid during Phase-2 times because of clock feedthrough. 12.116 fo fC Q= 1pF 0.1pF C 3 C4 10 5 79.1 kHz C1C 2 0.4pF 0.4pF C 3 C1C 2 C 4 C1 C2 0.4pF 0.4pF 1pF 1.58 0.1pF 0. 4pF 0. 4pF 12.117 12.118 V1 V o1 V V I S exp | V O1 V T ln 41 | V O2 V T ln 42 10k VT 10 I S 10 I S V V V V V O3 V O1 V O2 V T ln 41 ln 42 V T ln 18 22 10 I 10 I 10 IS S S 4 4 V O 10 I D 10 I S exp V V VD V V 4 10 I S expln 18 22 14 2 VT 10 IS 10 I S 12.119 33 12.120 The waveform going into the low- pass filter is the same as that in Prob. 12.119 8.2k except the amplitude will be VM 1V 3.037 V. 2.7k 1 T 3.037 10k 2 2 The average value of the waveform isV 0.759 V 10k T 12.121 The Fourier series converges very rapidly since only the even terms exist for n ≥ 2 and the terms decrease as 1/n2. Thus the RMS value will be dominated by the first term (n = 1). 2 1 120 2 Require: 0. 01 | 50 1 | o 2. 40 Hz 2 2 157 157 o 1 o 12.122 12.123 12.124 34 *PROBLEM 12.124 - RECTIFIER VS 1 0 PWL(0 0 1M 1 3M -1 5M 1 7M -1 8M 0) R1 1 2 10K R2 4 5 10K R3 5 6 10K R4 2 4 10K R5 1 5 20K D1 3 2 DIODE D2 4 3 DIODE EOP1 3 0 0 2 1E5 EOP2 6 0 0 5 1E5 .MODEL DIODE D IS=1E-12A .TRAN .01M 8M .PRINT TRAN V(6) .PROBE V(1) V(2) V(3) V(4) V(5) V(6) .END 12.125 *PROBLEM 12.125 - RECTIFIER VS 1 0 PWL(0 0 1M 1 3M -1 5M 1 7M -1 8M 0) R1 0 2 10K R2 4 5 10K R3 5 6 20K R4 2 4 10K D1 3 2 DIODE D2 4 3 DIODE EOP1 3 0 1 2 1E5 EOP2 6 0 1 5 1E5 .MODEL DIODE D IS=1E-12A .TRAN .01M 8M .PRINT TRAN V(6) .PROBE V(1) V(2) V(3) V(4) V(5) V(6) .END 12.126 Simplify the circuit by taking a Thevenin equivalent of the5V source and two 10k 10k 2.5V | R TH 10k 10k 5k 10k 10k 100k 5k V O 5V Using superposition: V + 2.5 5 2.62V 100k 5k 100k 5k 100k V O 0V: V + 2.5 2.38V V N 2.62 2.38 0.24 V 100k 5k resistors: V TH 5V 12.127 4.3k 0.993 V 4.3k 39k 4.3k V O 10V: V + 10 0. 993 V 4.3k 39k V N 0.993 0. 993 1.99 V V O 10V: V + 10 12.128 4.3k 0.487 V 4.3k 39k 4.3k For V O 4.3 0.6 4. 9V: V + 4.9 0. 487 V 4.3k 39k V N 0.487 0. 487 0. 974 V For V O 4.3 0.6 4. 9V: V + 4.9 35 12.129 Note: The design needs to use the circuit in Fig. 12.126. For V O 0: V V TH R2 0.05 R4 1 0. 975V | R TH R 3 R 4 | V TH 5 R TH R 2 2 R3 R 4 For V O 5: V V TH R2 R TH 0. 05 5 1 1. 025V R TH R 2 R TH R 2 2 Subtracting: 5 R TH R TH R2 0.05V 0.01 99 R TH R 2 R TH R 2 R TH R2 R TH R 2 0.975 R2 97.5 V TH 97.5 V TH 0.985 V R TH 0. 01 R TH 99 R TH R 2 V TH 0.985 5 R4 R 3 4.077 | Choosing R 4 2k R 3 8.154k R 3 R4 R4 R TH 8.154k 2k 1.606k | R 2 991.606k 159k Choosing standard values: R 2 160 k | R 3 8.2k | R 4 2 k 12.130 24k 3.4k 12 6.74 V 3. 4k 24k 3. 4k 24k 24k For v O = 0V: V + 6 5. 26 V 3.4k 24k t v t V F V F V I exp RC For v O = +12V: V + 6 T 6.74 8 6.74 12 12 5.26 exp 1 T 1 6200 3. 3x10 ln 50.7 s RC 5.26 6.74 T 5.26 = 0 0 6.74 exp 2 T 2 6200 3.3x10 8 ln 50.7 s RC 5.26 1 f= 9.86 kHz 50.7s + 50.7s 12.131 f = 0. The circuit does not oscillate. VO = 0 is a stable state. 12.132 36 a Let R1 R 2 | = R1 1 1+ | T = 2RC ln 2RC ln 3 2.197RC R1 R 2 2 1 During steady - state oscillation, the maximum output current from the op- amp is I= 5 2.5 5 5 7.5 | Let R = R1 R 2 | 1mA R 10k R1 R 2 R 2R R 0. 001s 4. 55x10 4 s | Selecting C = 0. 015F, R = 30. 3k 30 k 5% values 2.197 1 Final values: R = R 1 R 2 30 k | C = 0.015 F | f = 1.01 kHz 2.19730 k 0. 015F RC b = 1 R 1 2 R1 | max 1 1 = 0.525 | min = 0. 475 30k 0.95 30k 1.05 1 1 30k 1.05 30k 0.95 1 0.525 1. 213x10 3 s f min 825 Hz 1 0.525 1 0. 475 T min 2 30k 0.95 0.015F 0.90 ln 7.949x10 4 s f min 1.26 kHz 1 0. 475 4.75 c For v O = +4.75V: V + 4.75 2.375 V 2 5.25 For v O = -5.25V: V + 5.25 2.625V 2 t v t V F V F V I exp RC T max 230k 1. 05 0. 015F 1.1 ln 7. 375 T 2.375 4.75 4.75 2. 625exp 1 T 1 RC ln 1.133RC RC 2. 375 T 7.625 2.625 = 5. 25 5.25 2.375 exp 2 T 2 RC ln 1. 066RC RC 2.625 T = 2.199RC = 2.19930k 0.015F = 9.896 x10 -4 s f = 1.01 kHz Very little change 12.133 For a triangular waverform with peak amplitude VS and o 2000: v t 8V n2 S2 n1 sin n sin n ot 2 For the low - pass filter: A V s 1 s 1 3000 | A V jf 1 2 f 1 1500 A V j1000 0.832 | A V j3000 0. 447 | A V j5000 0. 287 1 5 2 = 7.41 V 0.832 8 This series contains only odd harmonics: For n = 2, V 2000 = 0. For a 5V fundamental: 8V S 2 0.832 5 V S = 5 1 For f = 3 kHz , n = 3: V 3000 0. 447 0.298 V .832 3 2 5 1 For f = 5 kHz, n = 5: V 5000 0.287 69.0 mV .832 5 2 37 12.134 V on 0. 6 1 V CC 15k 10 841 s T RC ln | = 0. 357 | 51k0.033F ln 1 15k 27k 1 0. 357 V 10 1 CC 1 0. 357 V EE 10 T r RC ln 51k0.033F ln 416 s V on 0. 6 1 1 V EE 10 1 12.135 V on V 1 CC V CC V EE | T r RC ln V 1 1 on V EE 1 T RC ln V on V 1 CC V CC T V EE ln V 1 Tr 1 on V EE 1 | ln 0.6 5 2 1 10s 5 5 | ln 1.12 2 ln 1 | 1.12 1 ln ln 0.6 1 5s 0.88 1 1 0.88 1 5 R MATLAB gives = 0.6998 1 = 2.33 | R 2 13 k | R 2 30. 3k 30 k R2 1 RC = 38 10 5 7.595s | C =150 pF | R = 50.6k 51 k 0.6 1 5 ln 1 0. 6998