Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. Publikacja dystrybuowana jest bezpłatnie Lecture 11 Transient states in electrical circuits – Laplace transformation approach Laplace representation of basic elements 3 Resistor Inductor Capacitor Any real circuit element has its Laplace model valid in complex frequency space (s-space). Kirchhoff’s laws for transforms Current law n I k 1 k (s) 0 k (s) 0 Voltage law n U k 1 These laws are formed identically as for real time currents and voltages. 4 Transient in the circuit using Laplace transforms 1) Determine the initial values iL(0-) and uC(0-) 2) Determine the steady state in circuit after commutation iLu(0+) and uCu(0+) 3) Calculate the natural responses ucp and iLp of the circuit deprived of external excitations (voltage source - short circuit, current source – open circuit) 4) Final solution is the superposition of both states iL (t ) iLu (t ) iLp (t ) uC (t ) uCu (t ) uCp (t ) This is so called method of superposition of states (necessary at sinusoidal excitations). 5 Calculation of natural response • Eliminate the external sources the RLC circuit • Determine the initial conditions for natural response iLp (0 ) iL (0 ) iLu (0 ) uCp (0 ) uC (0 ) uCu (0 ) • Form the Laplace model of the RLC circuit deprived of external sources • Using Kirchhoff’s laws find the solution of this circuit in s-space (operator form) • Calculate the inverse Laplace transforms (original fuctions) of the currents of inductors and voltages of capacitors. 6 Example Determine the transient of inductor current after commutation. Assume: R=2 , L=1H, C=1/4F, e(t ) 10 2 sin( 4t 45o ) Solution: Initial conditions 4, I L 7 j 45o 10e 2,5 , iL (t ) 2,5 sin( 4t ) 4 j4 2 iL (0 ) 0, uC (0 ) 0 Steady state after commutation j 45o I Lu 10e j11, 31o 2.77e , 2 j 4 j1 U Cu j1 I Lu 2,77e j101, 31o iLu (t ) 2,77 2 sin( 4t 11,31o ), uCu (t ) 2,77 2 sin( 4t 101,31o ) iLu (0 ) 0,76, uCu (0 ) 3,84 8 Natural response Laplace model of the circuit for natural response Initial conditions for natural response iLp (0 ) iL (0 ) iLu (0 ) 0,76, uCp (0 ) uC (0 ) uCu (0 ) 3,84 Solution as Laplace transform I Lp ( s) 9 LiLp (0 ) uCp (0 ) s2 s 4 s 0,76s 3,84 s 2 2s 4 Final solution Because of complex poles we apply the table of trasforms 1 0,76( s 1) 4,6 3 3 I Lp ( s) 2 2 s 1 3 Natural response in time form iLp (t ) 0,76e t cos( 3t ) 2,67e t sin( 3t ) Total current of the inductor iL (t ) iLu (t ) iLp (t ) 2,77 2 sin( 4t 11,31o ) 0,76e t cos( 3t ) 2,67e t sin( 3t ) 10 11 Transient state in RLC circuit at DC excitation Zero initial conditions uC (0 ) 0, iL (0 ) 0 Laplace model of the circuit Laplace form of solution Current in Laplace form E/s E/L sL R 1 / sC s 2 R s 1 L LC Characteristic equation I (s) s2 R 1 s 0 L LC Poles 2 R 1 R s1 , 2L 2 L LC 2 12 R 1 R s2 2L 2 L LC Three cases of general solution • Overdamped (aperiodic) case: L R2 C • Critically damped case L R2 C • Oscillatory (periodic) case L R2 C • Critical resistance R2 13 L C Overdamped case Both poles are real and single. The time form of current i (t ) E 2 1 R 2L 2 L LC Damping coefficient e s1t e s2t E 2 1 R L 2 L LC R 2L Voltages of capacitor and inductor uC (t ) E E 2 s e 2 s1t s1e s2t 1 R 2 2 L LC di E s1t s2t u L (t ) L s e s e 1 2 2 dt 1 R 2 2 L LC 14 e R t 2L R 2 1 sh t 2 L LC Graphical form of solution Examplary transients in RLC circuit for R = 2,3, C = 1F i L = 1H at E = 1V. 15 Transients of capacitor voltage and current in RC and RLC circuits 16 Critically damped case Double pole R s1 s2 2L Laplace form of current solution I (s) 17 E/L R s 2L 2 18 Time form of solution Current of inductor R E 2Lt i(t ) te L Voltage of inductor t di R uL (t ) L Ee 2 L 1 t dt 2L R Voltage of capacitor uC (t ) E Ri L (t ) uL (t ) E Ee R t 2L R t 1 2L Comparison of uC(t) at overdamped and critically damped cases 19 Oscillatory case Both poles are complex. Laplace form of solution 1 R2 2 E/L LC 4L I ( s) 2 R 1 R 1 R2 s2 s 2 L LC s 2 L LC 4 L Self-oscillation frequency 20 1 R2 2 LC 4 L 2 E/L 1 R2 2 LC 4 L 21 Time solution • Current of inductor R E 2Lt i (t ) e sin( t ) L • Voltage of inductor R t di E u L (t ) L e 2 L sin( t ) dt LC arctg R / 2L • Voltage of capacitor R E 2Lt L uC (t ) E uL (t ) Ri (t ) E e sin( t ) R sin( t ) L C Graphical form of solution 22 Transient uC(t) at different resistances in oscillatory case 23