Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Presentation On An Efficient Approach for Association Rule Mining by using modified Frequent Pattern mining Technique Chintan Bhatt (Enrollment No. 131150702002) Guide: Prof. Mehul Patel Co-Guide: Prof Hitul Patel Swaminarayan College of Engineering & Technology Gujarat Technological University OUTLINE • • • • • • • • • Objective Introduction Literature review Proposed Algorithm Comparative study Result and Analysis Conclusion Future Scope References 131150702002 2 OBJECTIVE Now a days Data Mining is the field in which lots of researches are carrying on by using a novel approaches still there is a need to make time and memory efficient techniques. I am concentrating on time and memory parameter and also making frequent pattern mining technique which supports incremental mining by using modified tree generation method and compact data structure. 131150702002 3 INTRODUCTION • Data Mining[10] – “The nontrivial extraction of implicit, previously unknown, and potentially useful information” – Find out useful information from large amount of data. – Extraction of knowledge from large amount of Data. • Why Data Mining[10]? – Too much data and too little information. – There is a need to extract useful information from the data and to interpret the data. 131150702002 4 Steps for knowledge discovery in databases [10] Database Data ware house Data Mining Patterns Knowledge 131150702002 5 ARM (Association Rule Mining)[10] Set of items: I={I1,I2,…,Im} Transactions: D={t1,t2, …, tn}, tj I Item set: {Ii1,Ii2, …, Iik} I Support of an item set: Percentage of transactions which contain that item set. Large (Frequent) item set: Item set whose number of occurrences is above a threshold. Support of AR (s) X Y: Percentage of transactions that contain X Y Support = P (X Y) Confidence of AR (a) X Y: Ratio of number of transactions that contain X Y to the number that contain X Confidence = P (X Y) / P(X) Where P is Probability 131150702002 6 Data Mining Techniques [10] 1. Classification 2. Clustering 3. Association Rule Mining 131150702002 7 Literature Survey 131150702002 8 Apriori Algorithm[1][2][3] • Apriori algorithm is a classical algorithm for association rule mining. • It uses Generate and Test approach. • It is level wise search algorithm where k-itemsets are used to generate k+1 itemsets. • It generates candidates itemsets and test whether it is frequent or not by using min_support and min_confidence threshold values. 131150702002 9 • Example:TID List of Items D001 C,M,E,A D002 C,M,E D003 M,A D004 C,E D005 C,E,A D MIN_SUPPORT=no. of occurrences of an item/total no. of transaction. • First step is to scan database to get the count for each items call it C1. • Generate frequent itemsets by using support threshold call it L1. • L1 is used to find out L2. • Do this until Lk. 131150702002 10 TID List of Items D001 C,M,E,A D002 C,M,E D003 M,A D004 C,E D005 C,E,A Items C Support Count generate 4 M 3 E 4 A 3 generate C1 Items Support Count C 4 M 3 E 4 A 3 L1 MIN_SUPPORT=2 • Scan database D again generate C2 by applying L1*L1 relation. • Generate L2 by using min_support threshold. 131150702002 11 Items Support Count C 4 M 3 E 4 A 3 Support Count Items Support Count 2 (C,M) 2 (C,E) 4 (C,E) 4 (C,A) 2 (C,A) 2 (M,E) 2 (M,E) 2 (M,A) 2 (M,A) 2 (E,A) 2 (E,A) 2 Items SCAN D (C,M) L1*L1 C2 L2 MIN_SUPPORT=2 Items Items Support Count (C,M,E,A) 1 SCAN D C4 131150702002 L3*L3 SCAN D ItemsL2*L2Support Support Count Count (C,M,E) 2 (C,M,E) 2 (C,E,A) 2 (C,M,A) 1 (C,E,A) 2 (M,E,A) 1 L3 C3 12 • Advantages – Uses large itemset property – Easy to implement • Disadvantages – Assume transaction database is memory resident. – Requires many database scans. – Large no. of candidate generation. 131150702002 13 FP-Growth Algorithm[4][5] • It overcomes the limitations of Apriori like huge no. of candidates generation and need to scan database again and again. • It uses Divide and conquer approach. • It compresses the database representing frequent patterns into a FP-Tree which contain the itemsets association information. • Construction of FP-tree uses two pass. 131150702002 14 First Pass • Take Database D. • Scan and generate 1-itemsets by sorted frequent items in order of descending support count. TID MIN_SUPPORT=2 List of Items D001 C,M,E,A D002 C,M,E Items Find count Support count Sort descending TID List of Items D001 C,E,M,A D002 C,E,M C 4 D003 M,A E 4 D003 M,A D004 C,E M 3 D004 C,E D005 C,E,A A 3 D005 C,E,A D 131150702002 L1 15 Second pass • Construction of FP-tree. • Create root nod as “null”. • Use linked list concept and start construction of FP-tree using support count. TID List of Items {} D001 C,E,M,A D002 C,E,M D003 M,A D004 C,E D005 C,E,A 131150702002 16 Second pass • Construction of FP-tree. • Create root nod as “null”. • Use linked list concept and start construction of FP-tree using support count. Items Sup_ count C 4 E 4 M 3 A 3 {} Node link C:4 E:4 M:2 M:1 A:1 A:1 A:1 131150702002 17 Mining the FP-tree • Take initial suffix pattern. • Construct conditional pattern base. • "sub-database which contains set of prefix paths in fp-tree co-occurring with the suffix pattern” • Perform mining recursively on the tree. Items Conditional pattern base Conditional FP-tree Frequent patterns A {{C,E,M:1},{C,E:1},{M:1}} {C:2,E:2} {C,A:2},{E,A:2},{C,E,A:2} M {C,E:2} {C:2,E:2} {C,M:2},{E,M:2},{C,E,M:2} E {C:4} {C:4} {C,E:4} 131150702002 18 • Advantages – only 2 passes over data-set – “compresses” data-set – no candidate generation – much faster than Apriori • Disadvantages – FP-Tree may not fit in memory – FP-Tree is expensive to build 131150702002 19 ECLAT Algorithm[10] • It uses TID(transactional id). • It uses vertical data format(horizontal transactional can be transformed into the vertical data format). MIN_SUPPORT=2 TID List of Items Itemsets TID D001 C,M,E,A C D001, D002, D004, D005 D002 C,M,E D003 M,A M D001, D002, D003 D004 C,E E D001, D002, D004, D005 D005 C,E,A A D001, D003, D005 D 131150702002 VERTICAL DATA FORMAT 1-ITEMSET 20 Items TID (C,M) D001,D002, (C,E) D001,D002,D004, D005 (C,A) D001,D005 (M,E) D001,D002 (M,A) D001,D003 (E,A) D001,D005 Items TID (C,M,E) D001,D002 (C,E,A) D001,D005 VERTICAL DATA FORMAT 3-ITEMSET VERTICAL DATA FORMAT 2-ITEMSET 131150702002 21 • Advantage ―Very fast support counting • Disadvantage —Intermediate tid-lists may become too large for memory 131150702002 22 CATS Tree algorithm[4][6] • Compressed and Arranged Sequences tree algorithm. • Extension of FP-tree. • Use only single data scan. • Contains all elements of FP-tree. • Supports Interactive mining. 131150702002 Transaction 23 • CATS-tree construction Root TID Original Transaction Projected transactions for FP-tree 1 F,A,C,D,G,I,M,P F,C,A,M,P 2 A,B,C,F,L,M,O F,C,A,B,M 3 B,F,H,J,O F,B 4 B,C,K,S,P C,B,P 5 A,F,C,E,L,P,M,N F,C,A,M,P F:1 A:1 C:1 D:1 G:1 I:1 M:1 P:1 131150702002 24 • CATS-tree construction Root TID Original Transaction Projected transactions for FP-tree 1 F,A,C,D,G,I,M,P F,C,A,M,P 2 A,B,C,F,L,M,O F,C,A,B,M 3 B,F,H,J,O F,B 4 B,C,K,S,P C,B,P 5 A,F,C,E,L,P,M,N F,C,A,M,P F:1 A:1 A:1 C:1 B:1 D:1 C:1 G:1 F:1 I:1 L:1 M:1 M:1 P:1 131150702002 O:1 25 • CATS-tree construction Root TID Original Transaction Projected transactions for FP-tree 1 F,A,C,D,G,I,M,P F,C,A,M,P 2 A,B,C,F,L,M,O F,C,A,B,M 3 B,F,H,J,O F,B 4 B,C,K,S,P C,B,P 5 A,F,C,E,L,P,M,N F,C,A,M,P F:1 A:1 A:1 C:1 B:1 D:1 C:1 G:1 F:1 I:1 L:1 M:1 M:1 P:1 131150702002 Merge common items O:1 26 • CATS-tree construction Root TID Original Transaction Projected transactions for FP-tree 1 F,A,C,D,G,I,M,P F,C,A,M,P 2 A,B,C,F,L,M,O F,C,A,B,M 3 B,F,H,J,O F,B 4 B,C,K,S,P C,B,P 5 A,F,C,E,L,P,M,N F,C,A,M,P F:2 A:2 C:2 B:1 Merge common items D:1 G:1 I:1 L:1 M:1 M:1 P:1 131150702002 O:1 27 • CATS-tree construction Root TID Original Transaction Projected transactions for FP-tree 1 F,A,C,D,G,I,M,P F,C,A,M,P 2 A,B,C,F,L,M,O F,C,A,B,M 3 B,F,H,J,O F,B 4 B,C,K,S,P C,B,P 5 A,F,C,E,L,P,M,N F,C,A,M,P F:2 A:2 C:2 B:1 Swap item D:1 G:1 I:1 L:1 M:1 M:1 P:1 O:1 131150702002 28 • CATS-tree construction Root TID Original Transaction Projected transactions for FP-tree 1 F,A,C,D,G,I,M,P F,C,A,M,P 2 A,B,C,F,L,M,O F,C,A,B,M 3 B,F,H,J,O F,B 4 B,C,K,S,P C,B,P 5 A,F,C,E,L,P,M,N F,C,A,M,P F:2 A:2 C:2 B:1 Add remaining items to swapped node M:2 D:1 G:1 L:1 I:1 P:1 131150702002 O:1 29 • CATS-tree construction TID Original Transaction Projected transactions for FP-tree 1 F,A,C,D,G,I,M,P F,C,A,M,P 2 A,B,C,F,L,M,O F,C,A,B,M 3 B,F,H,J,O F,B 4 B,C,K,S,P C,B,P 5 A,F,C,E,L,P,M,N F,C,A,M,P Root F:2 A:2 C:2 M:2 B:1 D:1 L:1 G:1 O:1 I:1 P:1 131150702002 30 • Final CATS-tree…… • Frequency of a parent node must be greater than the sum of its children’s frequencies. Roo t B:1 F:4 B:1 C:1 A:3 H:1 K:1 C:3 J:1 M:3 S:1 P:1 O:1 B:1 P:2 E:1 L:1 D:1 L:1 G:1 O:1 N:1 I:1 131150702002 31 • Sorted frequent item list C:4 , F:4 , A:3 , B:3 , M:3 , P:3 , L:2 , O:2 ,D:1 , E:1 , G:1 , H:1 , I:1 , J:1 , K:1 , N:1 , S:1 Minsup=2 • According to the sorted item list the conditional CATS tree will be built. 131150702002 32 • Advantages – Only 1 pass over data-set – “compresses” data-set – no candidate generation • Disadvantages – Tree construction is expensive to built. – swapping and/or merging of nodes require extra cost. – The algorithm needs to traverse both upward and downward to include frequent items. 131150702002 33 A Time & Memory Efficient Technique for Mining Frequent Pattern Mining[15] • • • • This technique transforms the original data set into a transformed and compacted data set & then it discovers the frequent patterns from the transformed data set. Scan the data base (TDB) to find the support count of each single item. Store this result in a new data structure called Table. Compare the support of each element of Table to the minimum threshold. If the support of any element is less then the minimum threshold then that element is discarded. Now arrange all the elements of Table in the decreasing order of their support count. Discard all the infrequent item found in step2 are discarded from the original TDB. In this way, we will get a new NTDB, whose transaction will contain elements with support count greater than the threshold. Now rearrange all the transactions of NTDB in the decreasing order of their item count. Store all the transactions and their count in a multidimensional table (MTable). Then select transaction of highest size whose count is greater than the minimum threshold. If no such transaction found then select highest sized and second highest sized transaction to generate the second highest sized item set. Continue this process until frequent item sets with greater support count are found. 131150702002 34 Proposed Algorithm which supports….Incremental Data Mining and also….. • Frequent pattern mining without generation of candidate item sets. • Enable frequent pattern mining with different support without rebuilding the tree structure. • Allow mining with a single pass over the database as well as insertion and deletion of transactions at any time. 131150702002 35 INPUT DB (Database) Min_support Step 1: Scan DB and count number of each item set and discard item which does not support minimum threshold value call it NDB. Min_support=3 TID List of Items D001 C,M,E,A,P D002 C,M,E C 4 D003 M,A,F E 4 D004 C,E,P M 3 D005 C,E,A A 3 P 2 F 1 DB 131150702002 Items Support count TID List of Items D001 C,M,E,A D002 C,M,E D003 M,A D004 C,E D005 C,E,A NDB 36 Step 2: • Store discarded items in Temp Array. Items Support count P 2 F 1 Temp Array 131150702002 37 Step 3: • Arrange items in alphabetical order in NDB. TID List of Items TID List of Items D001 C,M,E,A D001 A,C,E,M D002 C,M,E D002 C,E,M D003 M,A D003 A,M D004 C,E D004 C,E D005 C,E,A D005 A,C,E NDB 131150702002 38 Step 4: Construction of tree. Step 5. Create root nod as “null”. Step 6. Use linked list concept and start construction of tree using support count. TID List of Items {} D001 A,C,E,M D002 C,E,M D003 A,M D004 C,E D005 A,C,E 131150702002 39 Step 4: Construction of tree. Step 5. Create root nod as “null”. Step 6. Use linked list concept and start construction of tree using support count. TID {} List of Items D001 A,C,E,M A:1 D002 C,E,M D003 A,M D004 C,E D005 A,C,E 131150702002 40 Step 4: Construction of tree. Step 5. Create root nod as “null”. Step 6. Use linked list concept and start construction of tree using support count. TID {} List of Items D001 A,C,E,M A:1 D002 C,E,M D003 A,M C:1 D004 C,E D005 A,C,E 131150702002 41 Step 4: Construction of tree. Step 5. Create root nod as “null”. Step 6. Use linked list concept and start construction of tree using support count. TID {} List of Items D001 A,C,E,M A:1 D002 C,E,M C:1 D003 A,M D004 C,E D005 A,C,E 131150702002 E:1 42 Step 4: Construction of tree. Step 5. Create root nod as “null”. Step 6. Use linked list concept and start construction of tree using support count. TID {} List of Items D001 A,C,E,M A:1 D002 C,E,M C:1 D003 A,M D004 C,E E:1 D005 A,C,E M:1 131150702002 43 Step 4: Construction of tree. Step 5. Create root nod as “null”. Step 6. Use linked list concept and start construction of tree using support count. TID {} List of Items D001 A,C,E,M A:1 C:1 D002 C,E,M C:1 D003 A,M D004 C,E E:1 D005 A,C,E M:1 131150702002 44 Step 4: Construction of tree. Step 5. Create root nod as “null”. Step 6. Use linked list concept and start construction of tree using support count. TID {} List of Items D001 A,C,E,M A:1 C:1 D002 C,E,M C:1 D003 A,M D004 C,E E:1 E:1 D005 A,C,E M:1 131150702002 45 Step 4: Construction of tree. Step 5. Create root nod as “null”. Step 6. Use linked list concept and start construction of tree using support count. TID {} List of Items D001 A,C,E,M A:1 C:1 D002 C,E,M C:1 D003 A,M D004 C,E E:1 D005 A,C,E E:1 M:1 M:1 131150702002 46 Step 4: Construction of tree. Step 5. Create root nod as “null”. Step 6. Use linked list concept and start construction of tree using support count. TID {} List of Items D001 A,C,E,M A:2 C:1 D002 C,E,M C:1 D003 A,M D004 C,E E:1 D005 A,C,E E:1 M:1 M:1 131150702002 47 Step 4: Construction of tree. Step 5. Create root nod as “null”. Step 6. Use linked list concept and start construction of tree using support count. TID {} List of Items D001 A,C,E,M A:2 C:1 D002 C,E,M C:1 D003 A,M D004 C,E E:1 D005 A,C,E M:1 E:1 M:1 M:1 131150702002 48 Step 4: Construction of tree. Step 5. Create root nod as “null”. Step 6. Use linked list concept and start construction of tree using support count. TID {} List of Items D001 A,C,E,M A:2 C:2 D002 C,E,M C:1 D003 A,M D004 C,E E:1 D005 A,C,E M:1 E:1 M:1 M:1 131150702002 49 Step 4: Construction of tree. Step 5. Create root nod as “null”. Step 6. Use linked list concept and start construction of tree using support count. TID {} List of Items D001 A,C,E,M A:2 C:2 D002 C,E,M C:1 D003 A,M D004 C,E E:1 D005 A,C,E M:1 E:2 M:1 M:1 131150702002 50 Step 4: Construction of tree. Step 5. Create root nod as “null”. Step 6. Use linked list concept and start construction of tree using support count. TID {} List of Items D001 A,C,E,M A:3 C:2 D002 C,E,M C:1 D003 A,M D004 C,E E:1 D005 A,C,E M:1 E:2 M:1 M:1 131150702002 51 Step 4: Construction of tree. Step 5. Create root nod as “null”. Step 6. Use linked list concept and start construction of tree using support count. TID {} List of Items D001 A,C,E,M A:3 C:2 D002 C,E,M C:2 D003 A,M D004 C,E E:1 D005 A,C,E M:1 E:2 M:1 M:1 131150702002 52 Step 4: Construction of tree. Step 5. Create root nod as “null”. Step 6. Use linked list concept and start construction of tree using support count. TID {} List of Items D001 A,C,E,M A:3 C:2 D002 C,E,M C:2 D003 A,M D004 C,E E:2 D005 A,C,E M:1 E:2 M:1 M:1 131150702002 53 Step 7: Mine tree by using FP-growth mining technique. • Step 1: The Conditional pattern base will be formed according to the ascending order of the items. • Step 2: Conditional FP-tree will be generated according to the same order as in step 1 by removing the items with the frequency less than the min_sup from the conditional pattern base. • Step 3: Finally frequent patterns will be generated from the conditional FP-tree. 131150702002 54 STEP 8: Update database by inserting new transaction. Count all items if any item available in temp array increment its count and then check all items count with Min_support value. Items Support count D006 A,P,F C 1 D007 C,P A 1 P 2 F 1 TID List of Items P satisfy Min_support value 3 so add new transaction in NDB then follow all steps. 131150702002 Increment same item in Temp Array Items Support count P 4 F 2 Temp Array 55 COMPARATIVE STUDY Properties Apriori FP-Growth ECLAT CATS Extension of FPgrowth Number of scans required in the best case 2 2 2 1 1 Number of scans required in the worst case K+1 2 K+1 1 1 Candidate generation Yes (is the No Yes No No bottleneck) Interactive Mining No No No Yes Yes Incremental mining No No No Partially but Unclear Yes Execution time slow Fast over Apriori Fast Fast Will test after implementation Memory Large Large than Apriori Large than Apriori & FPGrowth Large Will test after implementation 131150702002 56 Result and Analysis 131150702002 57 • • The goal of experiment is to find out the performance of proposed algorithm over existing algorithms. First experiment shows comparison between Apriori, FP-growth and Proposed Algorithm by requiring time for different min_sup value. Results show that Proposed Algorithm requires minimum time as compared to Apriori and FP-growth. The Apriori algorithm works on the principle of candidate generate and test, so it requires the maximum execution time. First Experimental result T I m e ( s e o n d ) 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 Apriori FP-growth Proposed Algorithm 20% 30% 40% 50% Min_sup 131150702002 58 • Second experiment shows that whenever there is an update in database FP-growth algorithm requires more memory because there is a need to build tree from the start but in Proposed Algorithm it requires less memory than FP-growth because it allows incremental mining. Second Experimental result 6 5.5 5 4.5 M 4 e m 3.5 o 3 r y 2.5 FP-growth Proposed Algorithm ( M B 2 ) 1.5 1 0.5 0 5k 10k 15k 20k Dataset 131150702002 59 • Third experiment shows that mining for different min_sup FP-growth algorithm requires more time because there is a need to build tree from the start but in Proposed Algorithm it requires less time than FP-growth because it allows iterative mining. Third Experiment result with different min_sup 0.4 T i 0.3 m e ( s 0.2 e c o n 0.1 d FP-growth Proposed Algorithm ) 0 5% 10% 15% 20% 25% 30% 35% 40% min_sup 131150702002 60 • Finally, all experiments show that if any modifications are proposed, as per the algorithm of FP-Growth, the tree generation procedure has to be started from the scratch. • In the Proposed Algorithm, if any transaction is going to be added, inserted or deleted there is a provision to make changes directly in the existing tree because it uses alphabetical order. So for incremental size of the database, Proposed Algorithm is better than any of the existing algorithms. 131150702002 61 Min_sup Apriori FP-growth Proposed Algorithm Time in second 20% 30% 2.3 1.6 0.2 0.17 0.21 0.15 40% 50% 1.23 1.11 0.25 0.2 0.15 0.19 First Experiment Table Dataset FP-growth Proposed Algorithm Memory in MB 131150702002 5k 4.71 5.59 10k 1.17 0.65 15k 3.71 2.8 20k 1.9 Second Experiment Table 0.72 62 Min_sup FP-Growth Proposed Algorithm Time in second 5% 0.281 0.312 10% 0.156 0.265 15% 0.125 0.125 20% 0.125 0.109 25% 0.219 0.156 30% 0.14 0.109 35% 0.109 0.109 40% 0.125 0.093 Third experiment result Table 131150702002 63 Conclusion • Modification done in FP-growth algorithm captures transactions of database and arranges nodes according to alphabetical order that is unaffected by changes in item frequency it also compact the database by using temp array. • By exploiting its nice properties, proposed algorithm can be easily maintained when there is an update in database transactions. • Proposed algorithm does not require merging and/or splitting of tree nodes. • It avoids the rescan of the entire updated database or the construction of a tree from the scratch for incremental updating. 131150702002 64 Future Scope • Still there is a need to reduce execution time and required memory for frequent pattern mining technique. • Incremental mining can be enabled without using alphabetical order by changing in data structure. • Several graph based techniques, finite automata (stack manipulation) and ant colony (ACO) optimization can be used for frequent pattern mining. • Frequent pattern mining can be done by using Neural Network Technique. 131150702002 65 References [1] Agrawal R, Imielinski T, Swami AN. "Mining Association Rules between Sets of Items in Large Databases." SIGMOD. June 1993. [2] R. Agrawal and R. Srikant, “ Fast algorithms for mining association rules”, Proceeding of the 20th VLDB Conference Santiago, Chile 1994. [3] R Agrawal, Mannila H, Toivonen H, Verkamo AI.“Fast Discovery of Association Rules." at Quest Project at IBM Almaden Research Centre and research at the university of Helsinki 1994. [4] Cheung W., ”Frequent Pattern mining without candidate generation or support constraint.” Master’s thesis, University of Alberta, 2002. [5] Jiawei Han, Jian Pei, and Yiwen Yin,” Mining Frequent Patterns without Candidate Generation “, Simon Fraser University, 2002. [6] William Cheung and Osmar R. Zaiane, “Incremental Mining of Frequent Patterns without candidate Generation or Support Constraint”, IDEAS’03. [7] Christian Borgelt, “ An Implementation of the FP-growth Algorithm” OSDM’05. [8] Q. I. Khan, T. Hoque and C. K. Leung, “ CANTree: A Tree structure for Efficient Incremental mining of frequent patterns”, ICDM ’05. [9] Sanjay Patel and Dr. Ketan Kotecha, “Incremental Frequent Pattern Mining using Graph based approach”, International Journal of Computers & Technology, March-April 2013. [10] Jiawei Han and Micheline Kamber, Book.”Data Mining, Concept and Techniques”. 131150702002 66 [11] “An Automata Approach to Pattern Collections”, Taneli Mielik¨ainen HIIT Basic Research Unit Department of Computer Science University of Helsinki, Finland [email protected] [12] Jayanta Kumar Basu,Debnath Bhattacharyya, Tai-hoon Kim, “Use of Artificial Neural Network in Pattern Recognition “, International Journal of Software Engineering and Its Applications Vol. 4 No. 2 April 2010. [13] Ketki Muzumdar, Ravi Mante, Prashant Chatur,” Neural Network Approach for Web Usage Mining”, International Journal of Recent Technology and Engineering (IJRTE) ISSN: 22773878, Volume-2, Issue-2, May 2013 [14] Mark W Craven, Jude W Shavlik,” Using Neural Networks for Data Mining”, Submitted to the Future Generation Computer Systems special issue on Data Mining. [15] Pradeep Rupayla, Kamlesh Patidar “A Time & Memory Efficient Technique for Mining Frequent Pattern Mining ” International Journal of Innovative Research in Computer and Communication Engineering ISSN(Online): 2320-9801 ISSN (Print): 2320-9798, Vol. 3, Issue 2, February 2015 [16] A.Meenakshi “SURVEY OF FREQUENT PATTERN MINING ALGORITHMS IN HORIZONTAL AND VERTICAL DATA LAYOUTS” International Journal of Advances in Computer Science and Technology, ISSN 2320 – 2602 Volume 4 No.4, April 2015 WEBSITE [17] http://fimi.cs.helsinki.fi/data [18] http://www.almaden.ibm.com/cs/quest//syndata.html#assocSynData 131150702002 67