Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
An Artist’s Impression The young Sun solid planetesimals gas/dust nebula Sequence of events • 1. Nebular disk formation • 2. Initial coagulation (~10km, ~104 yrs) • 3. Runaway growth (to Moon size, ~105 yrs) • 4. Orderly growth (to Mars size, ~106 yrs), gas loss (?) • 5. Late-stage collisions (~107-8 yrs) Dust grains Timescale Summary Runaway growth ~Moon-size (planetesimal) ~0.1 Myr Orderly growth ~Mars-size (embryo) ~1 Myr Late-stage accretion (Giant impacts. Gas loss?) ~Earth-size (planet) ~10-100 Myr What does our Solar System consist of? • • • • The Sun 99.85% of the mass (78% H, 20% He) Nine Eight Planets Satellites (Moons) Comets, asteroids, Kuiper Belt Objects, etc. Where is everything? Note logarithmic scales! V E Me Ma Terrestrial planets J S U N P KB Gas giants Ice giants 1 AU is the mean Sun-Earth distance = 150 million km Nearest star (Proxima Centauri) is 4.2 LY=265,000 AU Me V E Ma Inner solar system 1.5 AU Note log scales! Outer solar system Basic data Distance (AU) Porbital (yrs) Protation (days) Sun 24.7 Mercury 0.38 0.24 58.6 Venus 0.72 0.62 243.0R Earth 1.00 1.00 1.00 Mars 1.52 1.88 1.03 Jupiter 5.20 11.86 0.41 Saturn 9.57 29.60 0.44 Uranus 19.19 84.06 0.72R Neptune 30.07 165.9 0.67 Pluto 39.54 248.6 6.39R Mass (1024kg) 2x106 0.33 4.87 5.97 0.64 1899 568 86.6 102.4 0.013 Radius (km) r 695950 1.41 5.43 5.24 5.52 3.93 1.33 0.68 1.32 1.64 2.05 2437 6052 6371 3390 71492 60268 24973 24764 1152 See e.g. Lodders and Fegley, Planetary Scientist’s Companion (g cm-3) Nebular Composition • Based on solar photosphere and chondrite compositions, we can come up with a best-guess at the nebular composition (here relative to 106 Si atoms): Element H He C N O Ne Mg Si Log10 (No. 10.44 9.44 7.00 Atoms) 6.42 7.32 6.52 6.0 Condens. Temp (K) 120 180 -- 78 -- -- 6.0 S Ar 5.65 5.05 5.95 1340 1529 674 40 • Blue are volatile, red are refractory • Most important refractory elements are Mg, Si, Fe, S (makes up the rocky planets) Data from Lodders and Fegley, Planetary Scientist’s Companion, CUP, 1998 This is for all elements with relative abundances > 105 atoms. Fe 1337 Terrestrial (silicate) planets Venus Earth Mars Mercury Moon Io Ganymede • Consist mainly of silicates ((Fe,Mg)SiO4) and iron (plus FeS) • Mercury is iron-rich, perhaps because it lost its mantle during a giant impact (more on this later) • Volatile elements (H2O,CO2 etc.) uncommon in the inner solar system because of the initially hot nebular conditions • Some volatiles may have been supplied later by comets • Satellites like Ganymede have similar structures but have an ice layer on top (volatiles are more common in the outer nebula) Useful Data Venus Earth Solar constant (Wm-2) 2620 Obliquity (o) Titan Jupiter Saturn Uranus Neptune 1380 594 15.6 50.5 14.9 3.7 1.5 177 23.4 24.0 (27) 3.1 26.7 98 28.3 Orbital period (years) 0.62 1 1.88 (29.4) 11.9 29.4 84 165 Rotation period (hours) 5832 24 24.6 383 9.9 10.7 17.2 16.1 Bond albedo A 0.76 0.4 0.15 0.3 0.34 0.34 0.3 0.29 Molecular wt. m (g/mol) 43 29 43 29 2.2 2.1 2.6 2.6 Tsurface or T1bar (K) 730 288 220 95 165 134 76 72 Surface pressure (bar) 92 1 .007 1.47 n/a n/a n/a n/a g (ms-2) 8.9 9.8 3.7 1.35 24.2 10.0 8.8 11.1 Teq (K) 229 245 217 83 113 84 60 48 Scale height H (km) 15 8.5 12 23 27 60 28 20 Radius (km) 6052 6370 3390 2575 71,500 60,300 25,000 24,800 Mass (1024 kg) 4.87 5.97 1900 568 Data mostly from Taylor, Appendix A Mars 0.64 0.13 87 102 F.Nimmo EART164 Spring 11