Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
AL-MC-Gravitation / p.1 1. 2. (88-I-8) A. –4 kJ. A satellite moving round the Earth in a circular B. –2 kJ. orbit of radius R has a period T. What would the C. +2 kJ. period be if the orbit were of radius R/4? D. +4 kJ. E. +8 kJ. A. T/8 B. T/4 C. T/2 In which of the following situations is the D. 2T magnitude of the normal reaction of the supporting E. 4T surface, R, equal to the weight of the body, mg? 4. (91-I-1) (89-I-11) (1) At rest on a rough inclined plane. Assuming the Earth to be a perfect sphere, what (2) On the floor of a spacecraft in circular orbit would its angular velocity of rotation have to be around the earth. for an object at the equator to be weightless (i.e. to (3) give a spring balance reading of zero)? On the floor of a lift moving upwards with uniform velocity. (Radius of the Earth = 6.4 10 m .) 6 A. (1), (2) and (3) A. 2.4 10 12 rad s 1 B. (1) and (2) only C. (2) and (3) only B. 1.6 10 6 rad s 1 D. (1) only E. (3) only C. 1.3 10 3 rad s 1 D. 8.0 10 2 rad s 1 An object of mass m is released from a spacecraft E. 6.4 10 5 rad s 1 which has radius R and mass M. On reaching the 5. (92-I-5) at a distance 3 R from the centre of the Earth Earth’s surface, the increase in kinetic energy of the object is 3. (89-I-12) Two points X and Y are at distances a and 2a from the centre of the Earth. The gravitational potential at X is 8 kJkg 1 . When a 1 kg mass is taken from X to Y the work done on the mass is A. Gm M/(3 R) B. 2 Gm M/(3 R) C. Gm M/(2 R) D. E. Gm M/ R 2 Gm M/ R AL-MC-Gravitation / p.2 6. (93-I-10) 8. The velocity of escape from the earth is (93-I-12) A communication satellite appears stationary V0 . For a vertically above an observer at the equator. The planet with radius twice that of the earth and with height of the satellite above the observer is density three times that of the earth, the velocity of 3.6 10 7 m . Calculate the mass of the earth. 6 Given : Radius of the earth = 6.4 10 m escape from the planet would be Gravitational constant = 6.7 10 A. B. 7. 11 Nm2 kg 2 3V0 / 2 2V0 A. 4.5 10 24 kg C. 6V0 B. 5.0 1024 kg D. 2 3V 0 C. 5.5 10 24 kg E. 2 6V0 D. 6.0 10 24 kg E. 6.5 10 24 kg (93-I-11) For planets or satellites in circular orbits around a celestial body such as the sun or the earth, the 9. (94-IIA-11) period T is related to the radius of orbit r by Two satellites A and B of the same mass are Kepler’s 3 rd Law T kr constant. moving in circular orbits round the earth. The 2 3 where k is a Which of the following statements concerning the constant k is correct? radius of A’s orbit is r and that of B’s orbit is 2r. Their total mechanical energies are E A and E B respectively. Which of the following descriptions A. It is a dimensionless constant whose value is not affected by the choice of units. B. It is a universal constant whose value depends on the choice of units. D. It would have a certain value for the earth moving around the sun, but a different value for another planet moving around the sun. E. E A and E B is correctly? (Gravitational potential energy is taken to be zero at infinity) It is a universal constant whose value is not affected by the choice of units. C. about It would have a certain value for all planets moving around the sun, but a different value for all satellites moving around the earth. A. E A > 0 and E B = 2 E A B. E A > 0 and E B = 1/2 E A C. E A > 0 and E B = -2 E A D. E A < 0 and E B = 2 E A E. E A < 0 and E B = 1/2 E A AL-MC-Gravitation / p.3 10. (95-IIA-10) 12. (96-IIA-2) In which of the following cases is the resultant force on the object zero? The figure shows a satellite S moving round a (1) a satellite moving round the earth planet P in an elliptical orbit. Which of the (2) a feather falling freely in a vacuum cylinder following statements is/are correct? in a laboratory (3) (1) The speed of the satellite at A is faster than a gas bubble rising with terminal velocity in water when it is at B. (2) (3) 11. The angular momentum of the satellite about A. (1) only P is the same when it is at position A and B. B. (3) only The total mechanical energy of the satellite is C. (1) and (2) only the same at positions A and B. D. (2) and (3) only E. (1), (2) and (3) A. (1) only B. (3) only C. (1) and (2) only Two satellites of the same mass travel around the D. (2) and (3) only earth in circular orbits of different radii. The E. (1), (2) and (3) satellite in the orbit with smaller radius has 13. (96-IIA-3) (95-IIA-11) A. a greater speed. On a certain planet, an object is thrown vertically B. a longer period. C. a smaller acceleration towards the upwards with an initial velocity of v1 and it earth’s centre. returns to the ground after time t. If the velocity of escape from the planet is D. a greater angular momentum about the earth’s centre. v2 , find the radius of the E. planet. a greater sum of gravitational potential energy and kinetic energy. 2 A. 2v1 t v2 2 B. 4v1 t v2 2 C. 2v 2 t v1 D. v2 t 4v1 2 2 E. v2 t 2v1 14. (97-IIA-10) A low-altitude satellite near the earth’s surface has 1 a speed of 7.90 km s . The radius of the earth is about 4 times that of the moon and the ratio of the average density of the earth to that of the moon is about 5 : 4. The speed of a low-altitude satellite near the moon’s surface would be A. 1.77 km s B. 2.21 km s C. 2.47 km s D. 3.57 km s E. 4.42 km s 1 1 1 1 1 AL-MC-Gravitation / p.4 15. (98-IIA-17) 18. (01-IIA-19) The mass ratio of the earth and the moon is 81:1 Kepler discovered that the line joining the Sun and and the earth-moon separation is 3.8 10 m. At which position between the earth and the moon is a revolving planet sweeps out equal areas in equal the gravitational potential at a maximum? (Ignore all explains this phenomenon is 8 times. The physical law which most directly other planets.) A. B. C. D. E. A. Newton’s first law of motion. On the surface of the earth B. Newton’s third law of motion. 3.4 10 m from the earth 1.9 10 8 m from the earth 0.4 10 8 m from the earth C. Newton’s law of universal gravitation. D. conservation of angular momentum. E. conservation of energy. 8 On the surface of the moon 19. 16. (99-IIA-18) Due to air resistance, changes may occur to a Which of the following statements about a satellite orbiting the earth (assuming nearly communication satellite in parking orbit above the circular orbit). Which of the changes below is earth’s surface is incorrect? incorrect? A. It is accelerating towards the center of the earth at all times. B. It must be in circular orbit above A. The total mechanical energy of the the satellite will decrease. earth’s equator. C. B. The angular momentum of the satellite about the earth’s centre will decrease It is always vertically above the same place in the earth’s surface. D. C. The linear speed of the satellite will It must be rotating in the same sense increase. and with the same angular speed as the D. The time needed for the satellite to earth. E. to its kinetic energy. (00-IIA-9) X and Y are two planets. Each of them has a low-altitude satellite revolving in a circular orbit close to the planet. If the two satellites are observed to have the same period, then X and Y must have nearly the same A. mass. B. average density. C. radius. D. acceleration due to gravity at the planet’s surface. E. complete one revolution will increase. It is at a height where its gravitational potential energy is numerically equal 17. (02-IIA-12) gravitational potential at the planet’s surface. 20. (04-IIA-7) A planet has a diameter 2 times that of the earth and a mass 3 times that of the earth. What is the approximate gravitational field strength, in N kg-1, on the planet’s surface? A. 7.5 B. 10 C. 15 D. 30