Download Quiz 6.1-6.3 Review #2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Euler angles wikipedia , lookup

Pythagorean theorem wikipedia , lookup

Perceived visual angle wikipedia , lookup

Trigonometric functions wikipedia , lookup

Transcript
MA42: TRIGONOMETRY
HOMEWORK: Quiz 6.1-6.3 Review #02
I.
Name:
Date:
Coterminal Angles (Lesson 6.1)
1) When are two angles coterminal?
2) Draw an angle  . Then draw an angle  that is a positive, coterminal angle to  .
Then draw an angle  that is a negative coterminal angle to  . (Be sure to label all
three angles).
  250
II.

5
6
  1.6
Find the exact value of the six trigonometric functions of the angle  given
in the figure. (Lesson 6.2)
3)
4)
3
2


3
7
III. Use trigonometric identities to transform the left side of the equation into the
right side. (Lesson 6.2)
5) cos tan   sin 
6) csc  tan   sec 
7)
csc  tan  cos   1
IV. Sketch a right triangle corresponding to the trigonometric function of the acute angle  .
Use the Pythagorean Theorem to determine the third side and then find the indicated
trigonometric function of  . (Lesson 6.3)
3
8) sec  2 , Find sin  , tan  , cos
9) cos  
, Find sec  , cot  , sin 
3
V. Let  be a “special” angle. Find the value of the trig functions. Derive the values by
1) drawing  , 2) finding the reference angle, 3) complete & label the triangle, 4) use side
lengths to determine the function values. Do not do this from memory or from a table.
10)   135 , Find sin  , tan  , sec
11)  
11
, Find cos  , cot  , csc
6
VI. Let  be an acute angle. Use the given function value and trigonometric identities to
find the indicated trigonometric function. (Lesson 6.2)
12) cos  
a) sec
2
, find
5
b) tan 
c) sin 
13) tan  
a) sec
3
, find
2
b) cos
c) sin 
VII. “Quiz Type” Questions
14) In which quadrant is the terminal side of  ? (Lesson 6.1)
  300
15) Convert the angle measure to decimal degree form. (Lesson 6.1)
13537'15"
16) If possible, identify the complement and supplement of angle  

6
. (Lesson 6.1)
17) Find one positive angle and one negative angle that are coterminal with the given
angle (answer in radians). (Lesson 6.1)
3

2
18) Express the angle in degree measure. (Lesson 6.1)

9
19) Convert the measure from degrees to radians. (Lesson 6.1)
247
20) Use the fundamental trigonometric identities to determine a simplified form of the
expression. (Lesson 6.2)
csc   cot  csc   cot  