Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
1. Fundamental and derivate quantities and units Fundamental Physical quantities are those that can be directly defined, and for which the units are chosen arbitrarily, independent of others physical quantities. No. Fundamental Quantity Unit Symbol Dimension 1 Length Meter m L 2 Time Second s T 3 Mass Kilogram kg M 4 Current intensity Ampere A I 5 Light intensity Candela Cd J 6 Temperature Kelvin K 7 Solid angle Ste-radian Sr 8 Plane angle Radian rad The derivative physical quantities are those that are defined indirectly. They have the measurement units’ functions of fundamental units. If we have: 2 U = U(L, T, M, I, J, ) [U] = LTMIJ The homogeneity of physical equations: 3 The physical formulas are invariant to the measurement units’ transformation. Examples: 3.1 Velocity: v lim t 0 x dx t dt v x m m s 1 L T 1 t s (1) v dv t dt a v m2 m s 2 L T 2 t s (2) p m v kg m kg m s 1 M L T 1 (3) 3.2 Acceleration: a lim t 0 3.3 Impulse: p mv s 1 3.4 Force: p dp dmv dv m ma lim t dt dt dt t 0 F F p kg 2 m kg m s 2 M L T 2 t s F 1 kg 2 m 1N s (4) 3.5 Pressure: P P F 2kg kg m 1 s 2 M L1 T 2 S s m dF dS P 1 N2 m 1Pa (5) 3.6 Mechanical work: 2 L F s kg m2 dL F ds s kg m 2 s 2 M L2 T 2 L 1N m 1J (6) 3.7 Kinetic energy: Ec m v2 ; 2 kg m 2 E c mv 2 kg m 2 s 2 M L2 T 2 ; E c 1kg m 2 s 2 1J (7) s 3.8 Gravitational potential Energy: 2 Ep m g h E m g h kg ms p 2 2 kg m 2 s 2 M L2 T 2 ; Ep 1kg m2 s 2 1J (8) 3.9 Elastically potential Energy: E p,e k x2 2 E kx 2 p ,e 3.10 Power: P dE dt P E kg 3m t s 3.11 2 kg m 2 s 3 M L2 T 3 P 1 J 1W s (10) Density: 3.12 kg m 2 kg m 2 s 2 M L2 T 2 ; Ep,e 1kg m2 s 2 1J (9) 2 s m kg3 kg m3 M L3 V m dm dV Angular velocity: 2 (11) 3.13 (12) Solid angle: d 4 rad rad s 1 T 1 t s d dt 2 A2 m 2 L0 1 R m dA R2 1L0 1steradian (13) Establishes into a constant approximation the formula of a gravitational (mathematical) pendulum, T using the homogeneity of the dimensional equations. R: From direct observation the physical quantities that can occur are: the length (l), mass of the pendulum (m), gravitational acceleration (g). T = k l m g 1 2 0 1 2 T1 k 0 L M L T 2 T1 L M T 2 , then by identifying the upper coefficients: 0 0 2 1 5 T kl1/ 2 m 0 g 1/ 2 T k l g The mass of a parachute with jumper (parachutist) is m = 100 kg, and is launched from a tower completely open with no initial velocity. Find the velocity expression, v(t) and the velocity limit if we know that the resistance force is proportional with the velocity, R = kv, where k = 500 Ns/m. R: If the force is defined as: F ma Along vertical direction can be rewritten as: F m dv dt The resultant (net) force is F G R , then: vt vt dv dv m k m mg kv dt ' ln g v t k dt k m v 0 v 0 g v 0 m vt t t mg 1 e m . k k 3 v 0 0 k k ln 1 vt t m mg If we will replace the physical quantities with values we get: 500 t 100 10 m 100 vt 1 e vt 2 1 e 5 t 500 s For the time goes to infinity one obtains: k t mg 100 10 mg m v lim lim vt lim 1 e v lim k k 500 t t v lim 2 m s 7.2 km h Finally the velocity expression can be written as: k t vt v lim 1 e m 6. A skier with the weight G descends a hill that make an angle with the horizontal plane. The motion equations are x = Agt2 along the hill land y = 0, where g is the gravitational acceleration and A a constant coefficient. How much is the friction force between skier and snow on the hill. (Particular case: the skier mass m = 70 kg, angle = 300; A = 0.1). R: The second principle of dynamics can be written as: G R Ff ma The projections along x and y axes are: G sin Ff ma x R G cos ma y The component of accelerations can be calculated with the following equations: d 2 x d 2 Agt 2 2Ag dt 2 dt 2 d 2 y d 2 0 ay 2 0 dt dt 2 ax With those: Ff G sin 2Amg Gsin 2A Ff mg sin 2A 70 9.81sin 30 2 0.1 686.7 0.3 Ff 206.01 N 7. A material point with mass m is moving along a trajectory given by the Cartesian components: xt A coskt and yt B coskt . Characterize the force F that produces this type of motion if we know that the force depends only by the material point position. Give some examples. R: The force components along Ox and Oy axes are: 4 Fx m a x m x Fx m d d x mk A sin kt mk 2 A coskt mk 2 x dt dt Fy m a y m y Fy m d d y mk B sin kt mk 2 B coskt mk 2 y dt dt The force modulus is: F Fx2 Fy2 mk 2 x 2 y2 mk 2 r where r is the material point position vector. The ratio: Fx mk 2 x x cos x , F 2 F mk r r are the direction cosine of the force F. 2 Fy mk y y cos y, F F mk 2 r r In the same time are the angles between the position vector and OX and OY axes, respectively. From here we can observe that the force F is anti-parallel with the position vector. Then the force F is pointing to the centre of the reference frame. Such a force is called attraction central force. 8. On a body with a mass m = 2 kg are acting two forces, F1 = 3 N and F2 = 4 N, which are characterized by the angles 1 = 600, and 2 = 1200 respectively, with the direction of velocity v 0 . Find the body acceleration, a, velocity, v and the distance covered into a time t = 10 s starting from the beginning of motion (Particular case v0 = 20 m/s). R: If we are considering a reference frame related to earth then the acceleration components along OX and OY axes are: ax F1 cos 1 F2 cos 2 3 cos60 4 cos120 3 0.5 4 0.5 1 0.25 m / s 2 m 2 2 4 F sin 1 F2 sin 2 ay 1 m 3 3 3 4 2 2 7 3 3.03 m / s 2 2 4 and the acceleration modulus: a a 2x a 2y 0.252 3.032 0.0625 9.1809 9.2434 3.04 m / s 2 We observe that the acceleration is constant in time (a = const), the velocity equation can be calculated from: 5 dv a dv a dt dt vt t v0 0 vt v0 at vt v0 at dv a dt' or by components: v x t v0 x a x t cu v0 x v0 v y t v0 y a y t cu v0 0 and from here: v x t v0 a x t 20 0.25 10 17.5 m / s v y t a y t 3.03 10 30.3 m / s and the velocity modulus: v v2x v2y 17.52 30.32 306.25 918.09 1224.34 34.99 m / s The velocity, v at time t makes an angle cu v 0 given by the equation: v 30.3 o arctg y arctg arctg 1.731 59 59'28" . v 17 . 5 x vy tg vx In order to calculate the distance we have: v ds dt ds v dt st s 0 v 0 t 2 at 2 s 0 0 st t s0 0 t dv v dt ' st s0 v0 at dt ' st v 0 t 0 at 3.04 100 20 10 200 152 352 m 2 2 2 or by components: x t v0 t yt 9. a yt2 2 axt2 0.25 100 20 10 200 12.5 187.5 m 2 2 3.03 100 151.5 m 2 A tractor is traveling with a velocity of v0 = 36 km/h. If the radius of the wheel is R = 0.5 m find out: a) The parametric motion equations of a point from the external wheel circumference. b) The tangential velocity components and the value of velocity. c) The path distance by a point between two contacts with the road. R: a) v R v0 rad 20 R s 6 x v 0 t x W y 0 t y w x w x CW x R y w yCW y R x R R sin t y R R cost x CW 0 yCW R y R x R v 0 t R sin t 10t 0.5 sin 20t y R R R cost 0.5 0.5 cos20t this is the equations of a cycloid. b) v x vy dx v 0 R cost v 0 1 cost 101 cos20t dt dy R sin t v 0 sin t 10 sin 20t dt v v 2x v 2y v 02 1 cost v 02 sin 2 t v 0 21 cost 2v 0 sin 2 t 2 v 20 sin 10t c) v ds vdt ds dt ds 2R sin t dt 2 t ddt ds 2R sin d 2 2 2 0 ds' 0 2R sin 2 d s 4R cos 2 0 8R 4 m s 10. A body with a mass m = 5 kg can slide with friction on a horizontal surface if is pushed by a spiral spring, with an elastic constant k = 200 N/m, and which was compressed at half of his length l = 20 cm. Find out: a) the mechanical work of friction force during expansion. b) how much must is the friction coefficient if in the final position the spring in not stressed. R: a) Fe kx W dW F dx W 200 0 0 x2 0 dW' l 2F dx W l 2 kx dx k 2 0 k l 2 l 8 20 2 10 4 1J 8 b) E t Lf E f E i Lf 0k l2 kl Nl Nl 2 2mg 7 11. 200 0.1 0.204 2 5 9.81 A concrete cube with the side of a = 0.8 m and a density of 2500kg/m3 must be tipped around an edge. Calculate: a) Point of application direction and value of the minimal force needed to turn turn-over; b) The expression of a horizontal force that can turn-over the concrete block if this is applied on superior edge as function of rotation angle. c) R: The mechanical work spent for turning over the concrete block. a) M F r F r F cos rF cos rF 1 r a 2 M F max r Fmax cos rF a 2Fmax MF max MG Fmax a 2Fmax G a a Vg ga 3 Fmax mg 2 2a 2 2 2 2 2 2500 9.81 0.83 4439.5 N 2 2 b) M F aF a F cos 2 MG G a cos 2 4 F a 3g F aF cos Ga 2 cos 2 4 2 a 3g 1 tg cos cos sin sin F 2 cos 4 2 4 0.83 2500 9.81 1 tg 6278.41 tg N 2 W MF c) dW MF d a 0 W 4 0 0 dW ' M 4 F d W 0 a3g 1 tg d 2 4 4 W MF MG 4 2 2 2 2 g cos d a 4 g sin a 4 g 1 2 4 2 40 2 2 8 W a 4g 2 2 1 W 0.84 2500 9.81 2 2 1 2080.48 J On an inclined plane with inclination = arcsin(3/5) and length l = 2.1 m is rolling with no 12. sliding friction an homogeneous sphere of mass m = 40 g and radius R = 10 mm. How much is the transversal velocity, angular velocity and frequency at the base of the plane. R: E t ,A E t ,B E t ,A E p,A mgh mgl sin E t ,B E kin,tr,B E kin,rot ,B I 2 mR 2 5 E t ,B v R 13. E kin ,rot ,B I2 2 v R mv 2 I2 mv 2 2 v2 mv 2 2 mv 2 7 mv 2 mR 2 2 2 2 5 2R 2 2 5 2 5 2 7 mv2 mgl sin 5 2 E kin,tr,B mv 2 2 v 10 10 3 gl sin v 9.81 2.1 4.20 7 7 5 m s v 4.2 rad 420.2 R 0.01 s 420.2 66.88 Hz 2 2 Demonstrate that after a perfect elastic collision of two hockey pucks of the same mass, initially the first one being at rest, the angle between the directions of pucks is 90 0. How much are the velocities and scatter angle 2 if the initial velocity of projectile puck is v = 40 km/h and 1 = 600? R: Ec,i Ec,f pi p f mv 2 mv 12 mv 22 p p1 p 2 p 2 p12 p 22 p p p 1 2 m2 v 2 m2 v12 m2 v 22 p p1 p 2 p1 p 2 2 p12 p 22 2p1p 2 p12 p 22 cos1 2 0 1 2 900 p1 p 2 2 900 1 900 600 300 9 2p1p 2 cos1 2 0 cos1 mv 1 v1 mv v v1 v cos1 40 cos2 mv 2 v 2 mv v v 2 v cos2 40 1 m 20 2 s 3 m 34.64 2 s 14. On the deflection plates of a cathodic oscilloscope with sensibility of 2 cm/V on both axes Ox and Oy it is applied simultaneously the electric voltage U x 2 cos100t and U y 4 sin 2 50t . Calculate: i. The spot equations of motion on Ox and Oy axes. ii. Equation of the trajectory. a) Sx R: Sy y Uy x Ux x Sx U x 2 y Sy U y 2 cm 2V cos100t x 4 cos100t cm V cm 4V sin 2 50t y 8 sin 2 50t cm V x x 4 cos100t x 4 cos100t cos100t b) 4 2 x 8 sin 50t y 8 1 cos100t y 41 cos100t 2 x y 41 4 x x y 4 4 15. A material point execute a motion described by the equation: xt 2 sin 2 3t . Show that 2 this is a harmonic oscillatory motion. Find the amplitude and period of motion, the velocity and acceleration of the material point. R: 2 x t 2 sin 3t 2 x t 2 1 cos6t 1 cos6t 1 sin 6t 2 2 sin 2 1 cos2 2 x t x ' A sin t 0 x ' 1 A 1 2 1 6 T 0.33 s 6 x t 1 sin 6t T 3 2 2 0 v dx d x ' A sin t 0 A cost 0 6 cos 6t dt dt 2 10 a 16. A dv 36 2 sin 6t dt 2 material point with the mass m = 10 g is oscillating under the law: xt 10 cos 2 t 5 . Calculate: 4 12 a. The time t1 necessary to reach the maximum velocity, and the time t2 necessary to reach the maximum acceleration; b. The maximum value of the elastic force that act on the material point; c. Expression of kinetic, potential and total energy. R: 2 1 cos t x t 10 cos 12 t 2 5 2 6 x t 10 5 5 sin t a) 2 6 cos 2 1 cos2 2 v max 5 6 dx v 5 cos t dt 6 6 cos t 1 1 6 2 a 5 max dv 2 36 a 5 sin t dt 36 6 sin t 1 6 2 t 1 n t 1 6n s 6 t 2 2n 1 6 2 t 2 32n 1 s b) Fe kx kA sin t 0 Fmax sin t 0 Fmax kA m2 A 10 10 3 2 5 10 2 1.37 10 4 N 36 4 mv 2 mA 2 2 cos 2 t 10 25 10 36 c) E c cos 2 t 3.43 10 6 cos 2 t J 2 2 2 6 6 2 kx 2 mA 2 2 sin 2 t 10 36 25 10 Ep sin 2 t 3.43 10 6 sin 2 t J 2 2 2 6 6 2 Et 4 mv 2 kx 2 3.43 10 6 J 2 2 11 17. A harmonic oscillator which oscillates with the amplitude, A of 8 mm is after 0.01 s from the beginning of motion (from equilibrium position) at the distance 4 mm measured from equilibrium position. Calculate: a. oscillatory pulsation; b. oscillatory period; c. oscillatory frequency; d. velocity of oscillation in the given position; e. acceleration of oscillation in the given position. R: a) yt A sin t 0 y0 0 A sin 0 0 sin 0 0 0 0 A 1 50 y 4 A sin sin 2 2 6 6 6 0.01 3 2 2 2 T T 0.12 s b) 50 T 3 1 1 8.33 Hz c) T 0.12 dy 50 50 A cost v 8 10 3 cos 0.01 0.419 cos d) dt 3 3 6 v 0.36 m s v e) a dv 2500 2 m 50 2 A sin t a 8 10 3 sin 0.01 a 10.97 2 dt 9 s 3 18. The sonic boom created by an airplane it is heard in the moment in which the direction observer–airplane makes an angle = 600 with the vertical. How much is the airplane speed? (vs = 340 m/s) R: 90 sin A0 v s t AA ' v a t va vs v 340 m s 2 340 680 2 Mach 1 sin cos s 2 19. How much is the fundamental frequency of vibration of a copper wire ( = 8.9 kg/dm3) with section of 2 mm2 and the length of 1 m when is stress with a force of 17.8 daN. 12 R: vT v v T m V Sl S l l l v v T ; 2l S 1 T 1 17.8 10 100 50 Hz 6 2l S 2 1 8900 2 10 2 20. Calculate the wavelength value of a sound of 440 Hz in air (va = 340 m/s) and into a tram line (vt = 5000 m/s). Calculate the steel Young modulus if the density is (t = 8000 kg/m3). R: a t vt v a 340 0.773 m 77.3 cm 440 v t 5000 11.36 m 440 E E v 2t 8 103 5 103 2 2 1011 N m2 21. In the liquid Helium (below 4.2 K) the sound velocity is 220 m/s. If we know the He density = 0.15 g/cm3 find the compressibility modulus. Compare this result with the water compressibility modulus if we know that the sound velocity is 1460 m/s. R: v He He He v 2He 150 220 2 7.26 106 W v 2W 1000 1460 2 2.1316 109 N m2 N m2 W 2.1316 109 293.6 He 7.26 106 22. By a copper wire with the length l = 160 cm and diameter = 1 mm is suspended a body with mass 10 kg. If the copper wire elongation is 2.56 mm find out: a. The stress, F l , strain, and elastic constant, k; S l b. The Young modulus, E; o c. How much is the inter-atomic distance if in the unstressed material is R 0 2.56 A ; 13 F mg 4mg 4 10 9.81 N 2 1.25 108 2 2 6 S r d 10 m 3 l 2.56 10 1.6 10 3 0.16% l 1.6 mg 10 9.81 N F Fe kl mg k 3.83 10 4 3 l 2.56 10 m 8 F l 1.25 10 N b) E E E 7.8 1010 2 3 S l 1.6 10 m R l l R R 0 R 0 1.6 10 3 2.56 10 10 4.096 10 13 m . c) R0 l l R: a) 23. In front of a microphone a sound has the pressure of 0.441 Pa (N/m2). How much we have to amplify the sound in order to reach the pain threshold, Ipain = 102 W/m2? We know the air acoustic impedance Za = c = 441 kg/m2s. How much is the pressure and the sound level? R: Nm NA NL NA NL Nm Im N m 10 lg I 0 NA NL Nm I N L 10 lg L I0 I I I N A 10 lg L 10 lg m 10 lg L Im I0 I0 I L I pain p 2 p 2 0.4412 4 W I m c Z 441 4.41 10 m 2 a IL 102 1 60 lg N A 10 lg 10 lg 4 4.41 4.41 10 Im N A 53.5 dB 24. Find the relation between the intensity of wave into an absorbed media as a function of depth of penetration and absorption coefficient. R: dI Idx 25. dI dx I Ix I0 x dI dx I 0 Ix x ln I0 Ix I 0 e x Hydrogen atom is constituted from a proton and an electron with equal electrical charges but opposite sign, and absolute value e = 1.610-19 C. In the fundamental state, the radius of electron first orbit around proton is r0 = 0.5310-10 m. Calculate the attraction force between proton and electron. 14 R: FC 19 1 e2 9 1.6 10 9 10 40 r02 5.3 1011 2 2 9 1.62 1093822 0.82 107 2 5.3 FC 8.2 10 8 N 26. What is the value of equal electrical charges, whit which two identical balls, having the same mass 1 kg, must be charged, if these are situated in air at 1 mm distance, and the Coulombian force that acts on each ball is equal in value with the ball weight into a place in which the gravitational acceleration is g = 9.8 m/s2. R: e2 FC k e 2 rpp FG k g FC e2 ke 2 FG rpp m 2p kg rpp2 m 2p rpp2 k e2 9 109 1.6 10 19 e 2 k g m p 6.67 10 11 1.67 10 27 2 2 9 1 .6 2 109381154 6.67 1.67 2 FC 1.238 1036 FG 27. Two small identical spheres placed in void, having the same mass m = 0.1 kg are suspended from a single point with the help of two isolated wires, not extensible, of neglected mass and with the same length l = 20 cm. What is the value of the equal charges with which the two spheres must be charged is such way that the angle between the fires should be 2 = 900? The gravitational accelerations is considered g = 9.8 m/s2. (sin 45 = 0.707; tg 45 = 1). R: FC k e q2 d2 G mg d 2l sin q2 2 F tg C d 2 G mg ke q 2 0.2 sin 45 0 qd m g tg 0.1 9.8 tg 450 9 109 ke m g tg 2 2l sin 2 2 ke q 0.4 0.707 q 2.95 106 C 15 0.98 1 4 10 2.95 106 90 28. Calculate the dependence of electrical field intensity and electrical potential on the center of a sphere having the electrical charge uniform distributed in the entire volume. The total charge is denoted by Q and the sphere radius by R. R: a) r < R; Qi E d s 0 Q E n ds 0i Q E ds i 0 Qi 0 E 4 r 2 Q Q Qi 3 4r 3 V 4R 3 3 Qi r3 Q R3 1 r3 Q r E 4 r 2 Q E 3 0 R 4 0 R 3 dV E V dV E dr dr Vr Q 1 4 0 R 3 r 0 V r r V 0 0 dV E dr' Vr r' dr' Vr V0 r 0 Q 1 r2 4 0 R 3 2 Vr Q r' dr' 4 0 R 3 Q r2 8 0 R 3 b) r > R; Qi E ds 0 dV E V dr Vr VR V r 29. 0 dV E dr Q dr' R 4 r' 2 0 Vr VR Qi E n ds r Q 40 r 2 r 1 d r' R Q E ds 0 V r V R Q E 4 r 2 0 r dV E dr' R Vr VR Vr VR Q 40 r Calculate the electric field intensity at a distance a from a rod, uniformly charged with a total charge Q. 16 Q 40 r 2 1 dr' R r' 2 r Q Q 40 r 40 R E Q 40 r 2 dE R: 1 dQ 40 r 2 Q dQ l dl Et 1 dx 40 r 2 l2 0 d x a2 x2 12 dx a 2 Et 2 x2 a2 x2 x2 a 2 x2 3 2 12 a 40 dx a 0 r 3 2 40 l2 1 x a 2 x 2 2 dx a a2 2 x2 3 2 32 2 x dx Et a 2 dx l2 l2 a 0 a 2 two conductors having the radius a and b, with a < b. Use the Gauss theorem to determine the dependence of electrical field intensity and electric potential from the coaxial cable axes. Calculate the coaxial cable capacity. The cable length is labeled by l is charged with an electrical charge q. R: a) r < a; Qi 0 dV E V dr 0 E ds E0 0 dV E dr dV 0 V const 17 x2 1 2 32 x2 1 a2 x2 1 x 2 40 a a 2 x 2 1 Q 40 2a 4a 2 l 2 E ds x2 1 Let’s consider a coaxial cable constituted from 30. dx 2 dx l2 1 x 0 a 2 x 2 3 2 2 40 a 0 d a 2 x 2 1 l2 1 Q l 2 2 40 a 40 a l l l2 a2 a2 4 4 1 Et 2 40 a a r r2 a2 x2 dQ dl dx dE t 2 sin 0 sin dE t 2dE y 2dE sin l2 0 dx b) r > b; Qi E d s 0 dV E V dr 0 E ds 0 E0 dV E dr dV 0 V const c) a < r < b; Qi E d s 0 Q E n ds 0i Q E ds i 0 Q Qi L l E 2r l E 2r l l 0 dV E V dV E dr dr Va Vb Vr 31. Q 2l 0 Q ln r 2l 0 b a 1 dr' r' C Q E n ds E n ds E 1 2 3 n ds 0i Qi 0 E V b V a 2r 0 dV b a E Q 1 dr' 2l 0 r' Va Vb U Q b ln 2l0 a Q 2l 0 U b ln a Use the Gauss theorem to calculate the expression of a plane capacitor capacity. R: Qi Q E d s E n ds i 0 0 Q E n ds E n ds E n ds i S1 S2 Sl 0 E ds E ds 0 S1 S2 2E S1 Qi ; 0 2E S1 S1 0 Qi 0 E 2E ds S1 Qi 0 Q Qi ; S S1 2 0 Qi S1 E C 2E dV E V dx 18 Q 1 2l 0 r 0 dV E dx V b b V a a dV E dr' Va Vb U E d 32. U Va Vb Eb a Q d d 0 0 S C Q 0 S U d Apply the Ampere’s law to Calculate the magnetic induction a) at a distance r from an infinitely long conductor b) and inside of an infinitely long solenoid (coil). R: a) I B C d l 0 I B C dl 0 I B 2r 0 I B 20r b) b c d a B d l I B d 0 t l B d l B d l B d l 0 N I C a b c d b B d l 0 0 0 N I B 0 dl 0 N I b a a B l 0 N I B 33. 0 N I 0 n I l Two electric currents I1 = 5 A and I2 = 10 A of the same sense are flowing through two parallel conductors, situated at a distance d1 = 20 cm one from each other. Calculate: a) The force per unit length with which the two conductors are mutually attracting; b) Calculate the mechanical work per unitary length spend to move the conductors at distance d2 =30 cm one from each other. (0 = 410-7 H/m). R: F12 B1 I 2 L a) 0 I1 B1 2 d1 F12 0 I1 I2 L 2 d1 F12 4 107 5 10 4 5 105 5 105 2 L 2 20 10 22 b) dL Fx dx L d2 dL' Fx dx 0 I I F12 0 1 2 L 2 d1 N m d1 19 L 0 I1 I 2 L dx 2 x d1 d2 2 0 I1 I 2 0 I1 I 2 dx 0 I1 I 2 d L L dx L L ln x d2 1 2 x 2 x 2 d1 d1 d2 d L L 0 I1 I 2 d 2 4 107 5 10 30 ln ln 0.405465 105 L 2 d 2 20 1 34. d 0 I1 I 2 L ln 2 2 d1 L 4.05465 10 6 L An electric current with I = 10 A is flowing through a straight line infinite long conductor which is placed in the plane of a rectangular frame parallel with two of his sides, like in the figure. We know the a = c = 20 cm and b = 30 cm. Calculate: a) the magnetic flux through the rectangular frame; b) the force that acts on each side of the frame; c) the total force that acts on the frame when through this a I’ = 5 A electric current is passing through. What is the sense of this electric current to observe an attraction force? R: a) d B dS b) ca ca ca 0 I 0 I dr 0 d' S B dS c B b dr b c 2r dr b 2 c r 0 I b c a 4 107 10 0.3 40 ln ln 4.15888 10-7 Wb 2 2 c 20 dF I' B dl a c F12 F34 I' c b F23 I' 0 F 0 dF I' B dl F I' B dl 0 I I' I a c 4 107 10 5 40 dr 0 ln ln 6.93147 106 N 2r 2 c 2 20 0 I I' I b 4 107 5 10 30 dr 0 7.5 106 N 2c a 2 c a 2 40 0 I 0 I' I b 4 107 5 10 30 F41 I' dr 15 106 N 2c 2 c 2 20 0 b F F12 F23 F34 F41 c) b I 'I a I 'I a b 0 b 0 b 2 2 cc a 2 2a c a c 7 I 'I b 4 10 5 10 30 F 0 7.5 10 6 N 4 a 4 20 F F23 F41 0 I 'I 2 20 J m 35. The electric current intensity that flow through a conductor is time dependent according to the following law: I(t) = 2+3t+t2. Calculate: a) The electric charge that pass through circuit during the time from t1 = 2 s to t2 = 5 s. b) The electric current intensity of a constant current, which leads to the same amount of electrical charge in the given time. R: dQ dt I a) t2 t2 t1 t1 Q dQ I dt 2 3t t 2 dt t2 3t 2 t 3 3t 22 t 32 3t12 t13 Q 2t 2t 2 2t1 2 3 2 3 2 3 t1 3 52 53 3 2 2 23 2 5 2 2 89.166 12.666 76.5 2 3 2 3 Q 76.5 C I0 b) 36. Q Q 76.5 25.5 A t t 2 t1 5 2 The wave function associated with a particle which describe the quantum behavior inside of an box with infinite walls is: n x A sin n a x , where a is the box width. Using the probabilistic interpretation of the wave function and the atemporal Schrödinger equation calculate: a) the normalization constant; b) the particles energy for a = 2 Å, m = 9.110-31 kg and n = 1, 2, 3, … R: a) The normalized probability is mathematically given by: dP 1 and using the relation dP x 2 dx (Copenhagen interpretation of wave function) 2 2 0 dP 1 x dx 1 A sin n a x dx A sin n a x dx 1 2 2 2 2 n 1 cos x a a 2 A2 a a 2n A 2n 2 A dx x dx sin x a a cos 2 2 0 2 n a 2 a 0 0 a A2 a 1 2 A 2 a 21 2 2 a 2 10 10 A A 105 m 1/ 2 d 2 2m b) E U 0 dx 2 2 d n n A cos x dx a a Schrödinger’s equation d 2 n n A x sin 2 dx a a 2 and U = 0 Schrödinger’s equation became: n n A sin a a 2 2m x 2 EA sin n a n 2m A 2 EA 0 a 2m n 2 2 E a 2 2 2 h2 6.6 10 34 8ma 8 9.110 31 2 10 10 2 2 2 E1 1 9.35 eV 2ma 37. x 0 2 En 2 2 2 n 2ma 6.6 2 10 68 1.495 10 18 J 9.35eV 51 8 9.1 2 10 2 2 2 E2 2 37.4 eV 2ma 2 2 2 E3 1 84.1 eV 2ma An atom from a Si crystalline network can be considered as a quantum particles inside a potential field of elastic forces U x kx2 / 2 which oscillate with the frequency = 2.51013 Hz. The wave function in fundamental state is x Aex . Use the Schrödinger equation to 2 calculate: a) the constant and b) the particles energy if the atom mass is m = 38.2 10-28 kg. x Aex R: a) 2 x 2 4 A x e 2 2 Ae 2 x 2 2 2 2 d d 2 2 A x e x and 4 A 2 x 2 e x 2 Ae x 2 dx dx 2m kx2 x 2 Ae 2 E 0 2 2 2m k 2 2m 4 2 x 2 E 2 0 for any x values. 2 2 2m k 4 2 2 0 2m E 2 0 2 mk 2 and from where 2 E m 22 k m m2 2 2 m h m 2 h 2 2 2 27 13 2 38.2 10 2.5 10 2 2 38.2 2.5 10 27 1013 2.856 10 22 m 2 6 .6 6.6 10 34 10 34 mk m 2 2 E mk 2 k h 2 m 2 m 2 2 The expression of energy of quantum oscillator is: 1 E n n h 2 E results the fundamental state with n = 0. h 6.6 10 34 2.5 1013 8.25 10 21 J 5.15 10 2 eV 2 2 A particle of mass m = 10-28 kg is described by the wave function: x, t Ae i t kx , with the 38. normalization constant A = 105 (m1/2), = 1015 (rad/s) and k = 1010 (m-1). Applying the quantum mechanical operators calculate the particles: energy, momentum (impulse), kinetically and potential energy. R: a) Eˆ i t i and Ê E i 2 Ae i t kx Ae i t kx E t E E 3.310 19 J 2.06eV b) pˆ i x pˆ Aike i t kx kAe i t kx k p i x i and p̂ p 1010 6.6 10 34 m p k 3.3 10 24 kg 2 s mv 2 pˆ 2 2 2 ˆ Ec T 2 2m 2m x 2 p2 3.3 10 24 T 2m 2 10 28 2 3.32 10 20 5.445 10 20 J 0.34eV 2 E T U U E T 2.06 0.34 1.72eV 23 6.6 10 34 1015 2