Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
INFOMATHS OLD QUESTIONS-CW1 TRIGONOMETRY 1. Let be an angle such that 0 < < /2 and tan (/2) is rational. Then which of the following is true? HCU-2012 (a) Both sin (/2) and cos(/2) are rational (b) tan() is irrational (c) Both sin () and cos() are rational (d) none of the above 2. If 5 3 , then 4 2 2cot 14. 3. 1 sin 2 15. 6. (b) 1-cot (d) – 1+cot 16. 17. 18. 2 cos, then cos– sinis equal to PU CHD-2012 (c) 2 sin sin (B) 19. 2 sec (D) 2 7. If sin = cos sin 0 sin cos 0 0 0 1 then = (a) (b) (c) 4 8. If A – B 9. (a) 2 (b) 1 (c) 0 Which of the following is correct? 4 (d) 2 20. NIMCET-2012 21. (d) 3 10. 11. (c) sin 1 = sin 1 (d) sin1 180 4 56 33 (b) (c) 16 63 5 , then tan A is : 2 1 (a) x 8 1 1 1 (b) x (c) x (d) x 8 2 2 If sinx + sin2x = 1, then the value of cos12 x + 3cos10x + 3cos8x + cos6x is BHU-2012 (a) – 1 (b) 1 (c) – 2 (d) 2 If the angle of elevation of a cloud at a height h above the level of water in a lake is and the angle of depression of its image in the lake is , then the height of the cloud above the surface of the lake is not correct: BHU-2012 h tan tan (b) tan tan h cot cot (d) cot cot x 3 (b) (c) x = 1 22. 13. (a) 0 (b) 1 (c) 2/3 (d) – 1 The value of cot-1 (21) + cot-1 (13) + cot-1 (-8) is sin h cos sin If x 1 3 (d) x = 0 1 sin 1 x cot 1 , 2 2 then x is : BHU-2012 33 56 If sin2x = 1 – sinx, then cos4x + cos2x = h sin If the angles of elevation of the top and bottom of a flag staff fixed at the top of a tower at a point distant a from the foot of a tower are and , then height of the flag staff is : BHU-2012 (a) a (sin - sin ) (b) a (cos - cos ) (c) a (cot - cot ) (d) a (tan - tan ) The solution of the equation (b) 2 (c) 1 23. NIMCET-2012 The value of (a) 3 cos 1 (b) 4 (d) 5 3 12. 4 3 1 1 (c) (d) 8 4 A B C If A + B + C = and x sin sin sin , then : 2 2 2 (a) 0 (d) 1 (b) 4 (a) , then tan (2α) = 63 65 (d) 3 (b) 5 NIMCET-2012 (a) 1 4 BHU-2012 4 5 , If cos and sin 5 13 is : sin1 If two towers of heights h1 and h2 subtend angles 60 and 30 respectively at the midpoint of the line joining their feet, then h1 : h2 is NIMCET-2012 (a) 1 : 2 (b) 1 : 3 (c) 2 : 1 (d) 3 : 1 0 A cot A (c) 1 x2 2x 2x 3sin 1 4cos 1 2 tan 1 2 2 2 1 x 1 x 3 1 x NIMCET-2012 (b) sin 1 < sin 1 1 3 1 (a) 8 (c) , then (1 + tan A) (1 – tan B) is equal to (a) sin 1 > sin 1 20 15 (c) (d) 16 21 4 5 The value(s) of cos cos is (are): cos 7 7 7 (a) Pune-2012 3 If cosec (b) BHU-2012 PU CHD-2012 (A) cos 34° (B) sin 34° (C) cot 56° (D) tan 56° The maximum value of sin(x + /6) + cos(x + /6) in interval (0, /2) is attained at (A) /12 (B) /6 (C) /3 (D) 2 (A) 3 4 BHU-2012 sec 37 (c) cot 8 (d) tan 16 csc 37 cos11 sin11 The value of cos11 sin11 If cos+ sin= 2 BHU-2012 (a) tan274 (b) 5. 4 (a) 9 HCU-2012 HCU-2012 4. (d) If sin (cos) = cos (sin), then sin 2 = (a) cos 37 sin 37 is cos 37 sin 37 The value of (c) 8 NIMCET-2012 is equal to (a) 1+cot (c) – 1 – cot (b) π (a) 0 3 2 2 6 1 cos 1 is equal to : 3 2 3 (c) 2 (d) 6 BHU-2012 NIMCET-2012 1 INFOMATHS/MCA/MATHS/OLD QUESTIONS INFOMATHS 24. If 4 x , then the value of tan is 5 2 sin x (a) 36. HCU-2011 25. (a) ½ or 2 (b) ½ or – 2 (c) ¾ or – 2 (d) ¾ or 2 The value of sin 30° cos 45° + cos 30° sin 45° [no correct answer was given in choices, correct answer should 3 1 be ] 2 2 (a) 26. 1 3 2 1 3 (b) 2 2 3 2 (d) 3 (a) A = 30°, a = 3 1 , b = (b) A = 30°, a = 3 1 , b = (c) B = 30°, a = 1 3 , b = 3 1 , b = 2 2 2 2 37. 3 1 3 1 3 1 3 1 38. 28. (b) a The general solution of 2n (b) 6 (c) No solutions 29. The value of (d) 1 tan 2 15 1 tan 2 15 2n n 30. 31. 32. 3 (b) (a) n 1 3 2 (b) 42. 43. (d) 2 34. (b) a c n 1 n 44. 45. 2 n 7 (d) n 1 6 (c) 1 46. 35. If x n 1 (d) x n 1 n (c) 3 4 n 4 4 , n 0, 1, 2,.... , n 0, 1, 2,.... If sin = sin , then the angle and are related by 2 2a 2x 1 1 b cos tan 1 2 2 1 a 1 b 1 x2 then x is equal to ab (c) 1 ab (b) b a b (d) 1 ab The value of 3 cot 200 -4 cos 200 is NIMCET-2010 (a) 1 (b) -1 (c) 0 (d) N.O.T If tan A – tan B = x and cot B – cot A = y, then cot (A – B) is equal to KIITEE-2010 1 y x (b) 1 xy (c) 1 1 x y (d) 1 1 x y (e) None of these If cos ( – ) = a, and cos ( – ) = b, then sin2 ( – ) + 2ab cos ( – ) is equal to KIITEE-2010 (a) a2 + b2 (b) a2 – b2 (c) b2 – a2 (d) – a2 – b2 (e) None of these The number of ordered pairs (,) where , (-,) satisfying cos 1 e is KIITEE-2010 (a) 0 (b) 1 (c) 2 (d) 4 (e) None of these If tan = (1 + 2-x)-1, tan = (1 + 2x+1)-1, then + equals KIITEE-2010 (a) 6 (b) 4 (c) 3 (d) 2 (e) None of these (d) 0 47. BHU-2011 (b) 2 m , n = 0, 1, 2, ….. cos ( - ) = 1 and The value of tan 9 - tan 27 - tan 63 + tan 81 is (a) 1 2 (c) (a) BHU-2011 c a 3 1 The general solution of the trigonometrical equation sinx + cosx = 1 is given by BHU-2011 (a) x = 2n, n = 0, 1, 2, … (a) a (c) 3 1 (d) NIMCET-2010 In a ABC, cosec A(sin B cos C + cos B sinC) equals (a) 3 1 m is 6 n 5 (c) n 1 6 33. 3 1 3 1 60m 3 1 (b) 6 If sin x, cos x and tan x are in GP, then the value of cot 6x – cot2x is: NIMCET-2011 (a) 2 (b) – 1 (c) 1 (d) 0 The greatest angle of the triangle whose three sides are x2 + x + 1, 2x + 1 and x2 – 1 is NIMCET-2011 (1) 150° (2) 90° (3) 135° (4) 120° The general value of θ satisfying the equation 2sin2 θ – 3sin θ – 2 = 0 is NIMCET-2011 n 3 1 60m 3 1 41. If sin-1 NIMCET-2011, BHU-2011 (a) 1 10 3 NIMCET-2011 (a) 10 a (d) ab 3 cos x sin x 3 is: 7 (d) BHU-2011 (a) = 2n + (-1)n (b) = n (c) = n + (-1)n (d) = (2n + 1) + 39. The value of cos 10 - sin 10 is BHU-2011 (a) positive (b) negative (c) 0 (d) 1 40. In a triangle ABC, R is circumradius and 2 2 2 2 8R = a +b +c . The triangle ABC is NIMCET-2010 (a) Acute angled (b) Obtuse angled (c) Right angled (d) N.O.T NIMCET-2011 (a) b 3 (c) 10 (b) x = 2n + b If tan , then the value of a cos 2θ + b sin 2θ is a a (c) b 10 (c) The solution of Δ ABC given that B = 45°, C = 105° and c = 2 is NIMCET-2011 (d) B = 30°, a = 27. (c) 2 1 (b) From the top of a lighthouse 60 m high with its base at the sealevel, the angle of depression of a boat is 15. The distance of the boat from the foot of the lighthouse is BHU-2011 (a) NIMCET-2011 1 cos 4 equal to (d) 4 1 3 3 sin , then the value of cos 2 5 2 If tan (cos) = cot(sin), then the value of (a) is 1 is KIITEE-2010 (b) 1 2 2 2 (c) 1 3 2 (d) 1 4 2 (e) None of these BHU-2011 2 INFOMATHS/MCA/MATHS/OLD QUESTIONS INFOMATHS 48. Solution of the equation cot 1 x sin 1 1 5 59. is 4 KIITEE-2010 (a) x = 3 (b) (c) x = 0 (e) None of these 49. 50. x 1 60. 5 (d) None of these 5 2 cot cos ec 1 tan 1 KIITEE-2010 3 3 6 3 4 5 (a) (b) (c) (d) 17 17 17 17 2 In ABC, a = 2, b = 3 and sin A then B is equal to 3 61. 62. (a) 30 (b) 60 The value of sin cos tan 3 45 6 3 is (c) PGCET-2010 (a) 0 (b) 1 2 (c) (d) 2 3 52. 63. 3 From a point 100 meters above the ground, the angles of depression of two objects due south on the ground are 60 and 45. The distance between the object is PGCET-2010 50 (a) 100 (c) mts 3 1 3 75 (b) 64. 3 mts 53. 54. 55. (b) (c) 75 3 125 mts (b) mts (d) 3 56. tan A 0 sin B 0 tan A 2sin 1 x sin 1 2 x 1 x2 3 100 If (b) 90 is (c) 75 mts (b) n 1 n2 n n2 The value of 68. (a) 17/6 (b) 7/16 If cos-1 x > sin-1x, then mts (c) 69. (b) –1 < x < 0 1 0 x tan 1 x( x 1) sin 1 x 2 x 1 (a) zero (b) one (c) two 2 (d) 1 x Consider the function 1 2 f x sin 2 x 3 on R. Let x1 and x2 be two real values such that f(x1) = f(x2). Then x1 – x2 is always of the form Hyderabad Central University – 2009 (a) n : n Z (b) 2n : n Z (c) 70. n 1 n2 The number of solutions for (KIITEE – 2009) (d) None of these (c) 6/17 2 (PGCET paper – 2009) (d) 15 (d) 1 1 x , 2 2 (KIITEE – 2009) (MCA : NIMCET – 2009) (c) holds for (d) (a) x < 0 1 1 tan 1 tan 1 1 2 1 (2)(3) 1 1 then is equal to ..... tan 1 1 (3)( 4) 1 n(n 1) n n 1 (b) 67. tan 1 (a) 3 3 x , 2 2 2 4 tansin 1 cos 1 5 3 (c) x [0, 1] 1 3 50 (KIITEE – 2009) has the value sin B cos C (a) x (-1, 0) 3 b 6 2, c 2 3 58. cos C The smallest angle of a ABC whose sides are a = 1, (a) 20 57. The number of values of the triple t(a, b, c) for which a cos 2x + b sin2x + c = 0 is satisfied by all real x is (MCA : KIITEE – 2009) (a) 0 (b) 2 (c) 3 (d) infinite (MCA : KIITEE – 2009) (c) 1 3 (d) 1 3 The elevation of the tower 100 meters away is 30. The length of the tower is (PGCET paper – 2009) (a) (d) – 1 1 The formula sin cos tan 3 45 3 6 1 3 (b) – 3 1 66. (d) None of these (PGCET– 2009) (a) 1 1 2 2 3 1 2 2 65. The greatest angle of ABC whose sides are a = 5, b 5 3 and c = 5, is PGCET-2010 (a) 45 (b) 100 (c) 120 (d) 60 The value of (d) 13 A 1 16 3 A 1 4 (a) sin A sin B cos C (b) 0 (c) 1 (d) None of these The number of solution of |cos x| = sin x, 0 x 4, is (MCA : KIITEE – 2009) (a) 8 (b) 2 (c) 4 (d) None of these 3 1 3 , then x is (b) 3 13 A 4 16 0 mts 3 1 4 If sin-1 x + cos-1 (1 – x) = sin-1 (-x), then x satisfies the equation (MCA : NIMCET – 2009) (a) 2x2 – x + 2 = 0 (b) 2x2 – 3x = 0 (c) 2x2 + x – 1 = 0 (d) None of these The equation sin4x + cos4x + sin2 x + = 0 is solvable for (MCA : NIMCET – 2009) (a) (d) 120 (MCA : NIMCET – 2009) (a) 1/6 (b) 1/3 (c) ½ (d) ¼ If A = cos2 + sin4, then for all values of (MCA : NIMCET – 2009) (c) KIITEE-2010 51. tan 1 2 x tan 1 3x (a) 1 A 2 The value of (c) 90 If (MCA : NIMCET – 2009) (d) infinite 71. 3 3 :nZ (d) n 3 :nZ Two persons are standing at different floors of a tall building and are looking at a statue that is 100 metres far from the building. Angle of inclination of the person at higher floor is 60 and that of the person at lower floor is 45. What is the distance between the two persons? Hyderabad Central University – 2009 (a) is 2n 3 1 100 (b) 3 1 100 (c) 3 100 (d) 100 / 3 The maximum value of (cos 1) (cos 2) …. (cos n) where 0 1, 2, n /2 and (cot 1) (cot 2) … (cot n) = 1 is INFOMATHS/MCA/MATHS/OLD QUESTIONS INFOMATHS NIMCET – 2008 87. If cos + cos = a, sin + sin = b and is the arithmetic mean between and , then sin 2 + cos 2 is equal to NIMCET – 2008 88. (a) 72. (a) (c) 73. 74. 75. 1 2n / 2 (b) 1 1 2n (c) 2n (a b) 2 /(a 2 b 2 ) (d) 1 (a b) 2 /(a 2 b 2 ) (b) a2 b2 (d) None a2 b2 The value of sin n sin 3 5 sin ...n n n (a) 0 77. (b) 6 4 terms is equal (d) None tan C 7 then the side c is 91. 2 9 MCA : KIITEE – 2008 (d) None (c) 2 In a ABC, A = 90. Then (a) 78. n 2 (c) In a ABC, a = 5, b = 4 and (a) 3 90. MCA : KIITEE – 2008 (b) 1 tan 1 92. b c tan 1 ac ab (b) If in a ABC, 3a = b + c then (c) tan 2 B C , tan 2 2 (b) tan 4 2 (c) 2 79. cos-1 (cos x) = x is satisfied by (a) x R (c) x [0, ] 80. The value of 2 tan 1 93. (a) (b) 81. 82. 83. 84. 85. 86. 2 (c) 4 has no (d) 75 cos then sin f() + cos sin ICET – 2007 1 0 0 (d) 1 (b) 1 0 0 1 0 1 1 0 If A + C = B, then, tan A tan B tan C = ICET – 2005 (a) tan B – tan A – tan C (b) tan B + tan A – tan C (c) tan B – tan A + tan C (d) tan A + tan B + tan C If a flag staff of 6 metres height, placed on the top of a tower If sin (a) 15 15 cot 17 sin , then, for 0 < < 90 8 tan 16 sec 17 23 49 (b) 22 49 (c) 18 49 (d) 17 49 The general solution of the equation sin2 – sin2 - 15cos2 = 0 is given by equals IP University : Paper – 2006 (a) n + tan-1 3 or m - tan-1 5 (b) n - tan-1 3 or m + tan-1 5 (c) n - tan-2 2 or m + tan-1 6 (d) n - tan-1 7 or m - tan-1 3 (e) None of these 95. When the length of the shadow of a pole is equal to a height of the pole, then the elevation of source of light is Karnataka PG-CET Paper – 2006 (a) 30 (b) 45 (c) 60 (d) 75 96. If tan A + cot A = 4 then tan4 A + cot4 A is equal to Karnataka PG-CET Paper – 2006 (a) 110 (b) 194 (c) 88 (d) 194 97. If one side of a triangle is double of another side and the angle opposite to these sides differ by 60, then the triangle is Karnataka PG-CET Paper – 2006 (a) right angled (b) an obtuse angled (c) an acute angled (d) None of these 98. If sin A = sin B and cos A = cos B, then Karnataka PG-CET Paper – 2006 (a) A = n + B (b) A = n - B (c) A = 2 n + B (d) A = 2n - B 99. If tan-1 x + tan-1 y = /4, then Karnataka PG-CET Paper – 2006 (a) x + y + xy = 1 (b) x + y – xy = 1 (c) x + y + xy + 1 = 1 (d) x + y – xy + 1 = 0 100. The equation 3 cos x + 4 sin x = 6 has _____ solution Karnataka PG-CET Paper – 2006 (a) finite (b) infinite (c) one (d) no 101. The value of sin x(1 + cos x) is maximum at: MP: MCA Paper – 2004 (a) /3 (b) /2 (c) /6 (d) 3/4 94. KIITEE – 2008 (d) None A tower casts a shadow 100, long when the elevation of a source of light is at 45. What is the height of the tower? KARNATAKA – 2007 (a) 100 3 (b) 100m (c) 10m (d) 10 3 m From the top of a light house 360 m height, the angles of depression of the top and bottom of a tower are observed to be 30 and 60 respectively. What is the height of the tower? KARNATAKA – 2007 (a) 200m (b) 210m (c) 190m (d) 240m The greatest angle of a triangle with sides 7, 5 and 3 is KARNATAKA – 2007 (a) 60 (b) 90 (c) 120 (d) 135 For a triangle XYZ, if X 2 ICET – 2005 KIITEE – 2008 (b) x [-1, 1] (d) None is sec 1 ICET – 2007 (c) 60 is equal to (d) None 1 1 tan 1 3 7 (c) (d) None KIITEE – 2008 (a) 1 sin f ( ) cos f 2 1 1 (a) 1 1 It sin 2 A 1 throws a shadow 2 3 of metres along the ground, then, the angle in degrees that the sun makes with the ground is ICET–2005 (a) 30 (b) 45 (c) 60 (d) 75 MCA : KIITEE – 2008 a tan 1 bc If (0 < < 90 and the matrix inverse than (a) 30 (b) 45 If (1 + tan 1) (1 + tan2) … (1 + tan 45) = 2n, then the value of n is NIMCET – 2008 (a) 21 (b) 22 (c) 23 (d) 24 The value of sin 12 and 48 sin 54 NIMCET – 2008 (a) sin 30 (b) sin230 (c) sin330 (d) cos3 30 to 76. 89. If A, B, C, D are angles of a cyclic quadrilateral then cos A + cos B + cos C + cos D is KARNATAKA – 2007, UP-2002 (a) 1 (b) 0 (c) 2 (d) 3 If x cos - y sin = and x sin + y cos then x2 + y2 ICET – 2007 (a) 2 (b) 2 (c) 2 + 2 (d) 2 – 2 2 , Y = 2, Z 3 1 then X is KARNATAKA – 2007 (a) 45 (b) 60 (c) 75 (d) 30 A wire of length 20 cm is bent so as to form an arc of a circle of radius 12 cm. The angle subtended at the center is KARNATAKA – 2007 (a) 3/5 radians (b) 5/3 radians (c) 1/3 radians (d) 5 radians A circular metallic ring of radius 1 foot is reshaped into a circular arc of radius 80 ft. The area of the sector formed is KARNATAKA – 2007 (a) 20 sq ft. (b) 40 sq. ft (c) 80 sq. ft (d) 60 sq. ft 102. 3 tan tan 1 4 4 UPMCAT : Paper – 2002 (a) 117 (b) 3/7 (c) -1/7 (d) None of these 103. Cos40 + Cos80 + Cos 160 is equal to : 4 INFOMATHS/MCA/MATHS/OLD QUESTIONS INFOMATHS (a) -1 (b) 0 104. A, B, C are in A.P. b:c (c) 1 UPMCAT : Paper – 2002 (d) N.O.T. 109. The maximum value of 3cosx + 4sinx + 5 is: UPMCAT : Paper – 2002 (a) 10 (b) 0 (c) 5 (d) None of these 3 1:1 then A is equal to : UPMCAT : Paper – 2002 (a) 103.5 (b) 98.5 (c) 101.5 (d) None of these 105. If two stones are 500 meters apart. The, angle of depressions being 30 and 45 as seen by aeroplane what is the altitude the plane is flying: UPMCAT : Paper – 2002 110. The sides of a triangle are a, b and greatest angle is : (a) 60 (b) 90 (c) 120 111. sin[cot-1 cos(tan-1 y)] is equal to : , then the UPMCAT : Paper – 2002 (d) None of these UPMCAT : Paper – 2002 (b) 250 3 mts 250 3 1 mts (c) 250 3 1 mts (d) None of these 1 106. tan tan 2 x is equal to : 4 (a) y 1 y2 2 (b) (c) y2 y 3 (d) None of these (a) 2 UPMCAT : Paper – 2002 (a) a2 ab b2 2x 1 2x 1 2x 1 (b) (c) (d) None of these 2x 3 2x 1 2x 1 112. If 107. If cosec x + cot x = 2 sin x, where 0 ≤ x ≤ 2π In then: UPMCAT : Paper – 2002 (a) x = π/3, 5 π/3 (b) x = π/3, 5π/6 (c) x = π/3, π (d) None of these 108. In a cyclic quadrilateral ABCD, sin (A + C) is equal to : UPMCAT : Paper – 2002 (a) ½ (b) 1 (c) – 1 (d) 0 y2 1 y2 2 1 1 3 then C is: bc ca abc (a) 90 (b) 60 (c) 30 UPMCAT : Paper – 2002 (d) 45 ANSWERS (OLD QUESTIONS-CW1) 1 C 11 A 21 B 31 D 41 D 51 A 61 D 71 A 81 B 2 A 12 B 22 C 32 D 42 A 52 D 62 B 72 D 82 D 3 C 13 B 23 D 33 C 43 D 53 C 63 D 73 C 83 C TRIGONOMETRY 4 5 6 7 D A A D 14 15 16 17 A D C B 24 25 26 27 A C A B 34 35 36 37 D A B C 44 45 46 47 A D B A 54 55 56 57 B D A C 64 65 66 67 D C B D 74 75 76 77 C A B A 84 85 86 87 D B C B 8 A 18 B 28 C 38 C 48 A 58 C 68 C 78 D 88 C 9 B 19 D 29 C 39 A 49 A 59 A 69 A 79 B 89 B 91 A 101 A 111 A 10 D 20 D 30 C 40 C 50 C 60 D 70 A 80 C 90 C 5 92 C 102 C 112 B 93 A 103 B 94 B 104 C 95 B 105 D 96 B 106 C 97 A 107 C 98 C 108 D 99 A 109 A 100 D 110 C INFOMATHS/MCA/MATHS/OLD QUESTIONS