Download CP Geometry

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
CP Geometry
Worksheet 2.7
X
1.
Given: 1 comp.
Prove: XA  XC
1 2
A
B
2
C
Given: 1  2
Prove: EG bisects
PEN
2.
P
G
KEY
Name:
E 2
1
4
1.
2.
3.
4.
5.
1.
2.
3
3.
4.
N
3.
Statements
1 comp. 2
1  2  90
1  2  AXC
AXC  90
XA  XC
Statements
1 2
1 3
2 4
3 4
EG bisects
PEN
1.
2.
3.
4.
5.
Reasons
Given
Def. Comp. Angles
Angle Add. Post.
Substitution
Def. Perp. Lines
Reasons
1. Given
2. Vertical Angles Th.
3. Trans./Substitution
4. Def. Angle Bisector
Statements
1
Reasons
3
1.
1 supp.
2. m 1  m
1  3;
3.
4. m 3  m
5.
3 supp.
4
2
Given:
Prove:
4.
1 supp.
3 supp.
2
4
Statements
1.
3 4
2.
1 3
3.
2 4
4.
1 2
5. RB bisects
1.
2.
3.
4.
ARC 5.
2
2  180
2 4
4  180
4
Reasons
Given
Vertical Angles Th.
Vertical Angles Th.
Trans./Substitution
Def. Angle Bisector
1.
2.
3.
4.
5.
Given
Def. Supp. Angles
Vertical Angles Th.
Substitution
Def. Supp. Angles
F
A
B
1
2
R
4
3
E
D
C
Given:
3 4
Prove: RB bisects
ARC
5.
Statements
3
4
1.
1
Given:
Prove:
2
1 2
1 3
4 2
6.
Statements
1
2; 1 
Reasons
3
1. Given
2.
2 3
2. Trans./Substitution
3.
3 4
3. Vertical Angles Th.
4.
2 4
4. Trans./Substitution
Reasons
1.
4 3
1. Given
2.
4 5
2. Vertical Angles Th.
3.
3 5
3. Trans./Substitution
4.
2 & 3 form LP 4. Def. Linear Pair
5.
2 supp.
6.
2  3  180
6. Def. Supp. Angles
7.
2  5  180
7. Substitution
8.
2 supp.
8. Def. Supp. Angles
3
5
5. Linear Pair Post.
2
Given:
Prove:
4
3
1
5
4 3
2 supp. 5
7.
Statements
Reasons
1. Given
1.
2 comp.
2.
2  3  90
2. Def. Comp. Angles
3.
2  3  ACB
3. Angle Add. Post.
4.
ACB  90
4. Trans./Substitution
5. CD  AB
6.
1  90
7.
ACB  1
3
C
2 3
1
A
D
5. Given
6. Def. Perp. Lines
7. Trans./Substitution
Given:
2 comp. 3
CD  AB
Prove: ACB  1
B
8. C
Statements
1.
2
1
A
B
Prove:
9.
ABC is a rt.
1 C
2 A
A comp. C
Given:
Prove:
4 5
4 supp.
1. Given
ABC is a rt.
2. m ABC  90
2. Def. Right Angles
3. m 1  m 2  m ABC
3. Angle Add. Post.
4. m 1  m 2  90
4. Trans./Substitution
5.
Given:
Reasons
1
C; 2 
A
5. Given
6. m C  m A  90
6. Substitution
7.
7. Def. Comp. Angles
A comp.
C
6
4
Statements
Reasons
1.
4 5
2.
5& 6 form LP 2. Def. Linear Pair
3.
5 supp.
1. Given
6
3. Linear Pair Post.
4. m 5  m 6  180
4. Def. Supp. Angles
5. m 4  m 6  180
5. Substitution
6.
6. Def. Supp. Angles
4 supp.
6
5
6
10.
1 4
2 3
Given:
Prove:
Statements
1 3
2
4
1.
1 4
1. Given
2.
1& 3 form LP
2. Def. Linear Pair
3.
2 & 4 form LP
3. Def. Linear Pair
4.
1 supp. 3
2 supp. 4
2 3
4. Linear Pair Post.
5.
Given: RP  q
1 comp.
Prove: 2  3
11.
3
Statements
P
1
3
2
1. RP  q ;
1 comp. 3
2.
1 comp. 2
q
R
3.
12.
Given:
Prove:
3
1 2
3 4
1
2
Given:
Prove:
3
2
1
1 supp.
1 3
5. Cong. Supp. Th.
Reasons
1. Given
2. Ext. sides of adj.
are  , then
s comp.
3. Cong. Comp. Th.
Reasons
1.
1 2
1. Given
2.
1& 3 form LP
2& 4 form LP
1 supp. 3
2 supp. 4
3 4
2. Def. Linear Pair
3.
4.
13.
2 3
Statements
4
Reasons
Statements
2
3. Linear Pair Post.
4. Cong. Supp. Th.
Reasons
1. Given
1.
1 supp.
2.
2 & 3 form LP
2. Def. Linear Pair
3.
2 supp.
3. Linear Pair Post.
4.
1 3
2
3
4. Cong. Supp. Th.
14.
Given:
1 comp. 2
3 comp. 4
Prove: m 1  m 4
Statements
2
3
4
15.
Given: OD  OB
OC  OA
Prove:
1 3
A
1
2
3
1. Given
4. m 2  m 3
4. Vertical Angles Th.
5. m 1  m 4
5. Subtraction
2. Def. Comp. Angles
3. Trans./Substitution
Statements
B
C
1 comp. 2
3 comp. 4
2. m 1  m 2  90
m 3  m 4  90
3. m 1  m 2  m 3  m 4
1.
1
Reasons
O
Reasons
1. OD  OB ; OC  OA
1. Given
2.
1 comp.
2. Def. Perp. Lines
3.
3 comp.
4.
1 3
2
2
3. Def. Perp. Lines
4. Cong. Comp. Th.
D
16.
JC  JD and
C
E
J
D
CJE . If m EJD  37 , then m K = 37º.
(Ext. sides of adj. are  , then
s comp. and Congruent
Complements Theorem)
K
m 1 m 2
m 3  5x  30
m 4  9x  50
17.
l
K is complementary to
3 1
2 4
Find m
m
m
m
1
50º
2
50º
3
130º
4
130º
Related documents