Download Week4

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Frequency Detection of CDRs (1)
Recall that faster PLL locking can be accomplished by use of a phase-frequency detector (PFD):
Vin
Vup -Vdn
Vup
4p
2p
+2
+4
p
Vdn
Vf
K pd =
Vswing
p
fin - fout
2Vswing
2p
Unfortunately this PFD does not work for the case where Vin is a random data sequence, i.e., in a CDR.
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
1
Frequency Detection of CDRs (2)
In general, conventional CDR PDs do not make good frequency
detectors. There are three general techniques to increase frequency
acquisition range:
1. A separate frequency acquisition loop with a reference clock.
2. Quadricorrelator.
3. Rotational frequency detector.
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
2
Frequency Detection of CDRs (3)
1. Frequency acquisition loop with a reference clock
Freq. Acquisition Loop
(CMU)
lock
detect
clock
divider
phasefrequency
detector
charge
pump
Ref. Clock
Multiplexer
Input Data
CDR
phase
detector
VCO
trans.
block
Recovered Clock
D
Q
EECS 270C / Winter 2016
Retimed Data
CDR Loop
Prof. M. Green / U.C. Irvine
J. Cao et al., “OC-192 transmitter
and receiver in 0.18m CMOS,”
JSSC. vol. 37, pp. 1768-1780, Dec.
2002.
3
Frequency Detection of CDRs (4)
2. Quadricorrelator (referenceless)
Figures from:
H. Ransijn and P. O’Connor, “A PLL-based 2.5-Gb/s
GaAs clock and data regenerator IC,” IEEE J. SolidState Circuits, vol. 26, Oct. 1992, pp. 1345-1353.
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
4
Frequency Detection of CDRs (5)
3. Rotational Frequency Divider (referenceless)
Figures from:
D. Dalton et al., “A 12.5-Mb/s to 2.7-Gb/s continuousrate CDR with automatic frequency acquisition and
data-rate feedback,” IEEE J. Solid-State Circuits, vol.
40, Dec. 2005, pp. 2713-2725.
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
5
Advantages of Using CMOS
• Compact (shared diffusion regions)
• Very low static power dissipation
• High noise margin (nearly ideal inverter voltage transfer characteristic)
• Very well modeled and characterized
• Mechanically robust
• Lends itself very well to high integration levels
• “Analog” CMOS process usually includes non-salicided poly layer for
linear resistors.
• SiGe BiCMOS is very useful but is generations behind currently
available standard CMOS
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
6
Transistor fT Calculation
VDD
ig
id
vgs
fT is the frequency at which
gm = mCox
Cgs
W
VGS -Vt
L
(
)
Cgs = gWLCox
VGS
id
gm
=
becomes
i g 2pfTCgs
wT = 2pfT =
1.
m
V -Vt )
2 ( GS
gL
fT gives a fundamental speed measure of a technology.
0.25 µm CMOS: fT ~ 23GHz (VDD = 2.5V)
0.18 µm CMOS: fT ~ 57GHz (VDD = 1.8V)
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
7
Static CMOS propagation delay:
Wp
Lp
Vout
Vin
Wn
Ln
Wp
Lp
Wn
Ln
t fall »
CL
W
mnCox n (VDD -Vt )
Ln
t rise »
CL
W
m pCox p (VDD -Vt )
Lp
Assume: Wp = 3Wn for optimum noise margin.
Lp = Ln = Lmin
t rise = t fall =
gLmin (Wp +Wn )Cox
mnCox
gL2min
=
mn
Wn
(VDD -Vt )
Lmin
æ W ö
1
4
=
çç1+ p ÷÷
è Wn ø VDD -Vt wT
Operation is 4X slower than theoretical
maximum due to n-channel & p-channel
gates connected in parallel.
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
(Actual  values will be higher
due to high diffusion
capacitances present in submicron transistors.)
8
Verifying with simulation:
n-channel ac simulation
to determine fT:
CMOS inverter transient simulation:
IG
Vin
Vout
ID
fT = 57GHz
EECS 270C / Winter 2016
t = 18ps »
Prof. M. Green / U.C. Irvine
6.4
wT
9
Single-Ended Signaling in CMOS
VDD
Vin
IDD
Vin
Vout
Vout
ISS
ISS
sub
IDD
VSS
Series R & L cause supply/ground bounce.
Resulting modulation of transistor Vt’s result in pattern-dependent jitter.
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
10
Effect of Supply/Ground Bounce on Jitter
VDD
¢
data in
data out
clock in
clock out
VSS
¢
Rs = 5 Ls = 5nH
VDD
¢
clock out
Rs = 0
Ls = 0
VSS
¢
clock out
Rs = 5
Ls = 5nH
EECS 270C / Winter 2016
data out
Prof. M. Green / U.C. Irvine
11
Summary of CMOS Gate Performance
Advantages of static CMOS gates:
1.
2.
3.
Simple & straightforward design.
Robust operation.
Nearly zero static power dissipation.
Disdvantages of static CMOS gates:
1.
2.
3.
Full speed of transistors not exploited due to n-channel & pchannel gate in parallel at load.
Single-ended operation causes current spikes leading to
VDD/VSS bounce.
Single-ended operation also highly sensitive to VDD/VSS bounce
leading to jitter.
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
12
Current-Mode Logic (CML)
CML inverter:
VDD
R
R
Vout+
• Based on conventional differential pair
Vout-
CL
• Differential operation
CL
Vin+
Vin-
ISS
EECS 270C / Winter 2016
• Inherent common-mode rejection
• Very robust in the presence of commonmode disturbances (e.g., VDD / VSS bounce)
Prof. M. Green / U.C. Irvine
13
DC Biasing of CML Inverter
VDD
1
ISS R
2_
1
ISS R
2 _
VOUT(DC )
VOUT(DC )
R
VIN(DC )
+
W
L
VGS _
1
Vin(DC ) =Vout (DC ) =VDD - ISS R
2
+
+
W
L
VS
_
ISS
VBIAS
EECS 270C / Winter 2016
R
To keep current source transistor in saturation:
VIN(DC )
+
VGS
VS > VBIAS -Vt
VS =Vin(DC ) -VGS
Vin(DC) > VBIAS + (VGS -Vt )
Prof. M. Green / U.C. Irvine
14
Logic Swing & Gain of CML Inverter
Vhigh =VDD
Vlow =VDD - ISS R
VDD
R
R
VDD-ISSR
ISS
VDD
CL
Vswing = ISS R
VDD
0
CL
W
L
W
L
ISS
To achieve full current switching:
VDD-ISSR
(
Vswing ³ VGS -Vt
Vswing
Vmin
Vswing
Vmin
EECS 270C / Winter 2016
=R
)
|I D =ISS
=
2ISS
mnC
W
ox L
ºVmin
1
W
mCox ISS
2
L
> 1 for correct operation
Prof. M. Green / U.C. Irvine
15
Small-Signal Behavior of CML Inverter
Small-signal voltage gain:
Av = gm R = R mCox
Recall
Vswing
Vswing
Vmin
Vmin
=
=R
Av
2
EECS 270C / Winter 2016
rise/fall time constant:
W
L SS
I
1
W
mCox ISS > 1
2
L
t = RCL (Assuming fanout of 1)
CL = gCoxWL
t = R(gWLCox )
Av ³ 2
for full switching
Note: rising & falling
time constants are the same
Prof. M. Green / U.C. Irvine
16
Speed vs. Gain in Logic Circuits
fast input transition:
step response determined by 
slow input transition:
step response determined by Av
Largest possible gain-bandwidth product is desirable.
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
17
Relationship between Av ,  , and Vswing
Av = R mnCox
Av2 = mnCox
W
L SS
I
W
m
ISSR2 = n2 × RgWLCox × ISSR
L
gL
(
)(
t
mn
= 2 Vswing
t
gL
Av2
)
Vswing
mn
A = 2 × t × Vswing
gL
2
v
“large-signal” gain-bandwidth product
Larger logic swing preferred for higher gain-bandwidth product
Larger Vswing  Larger Vmin  smaller W/L  larger current density
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
18
Thought Experiment
R
R
R
R
W
L
W
L
W
L
W
L
ISS
ISS
Suppose we decrease current density by increasing W/L:
W
1
´ 2 Þ Vmin ´
, CL ´ 2
L
2
R´
1
t = RC ´ 2
Slower!
2
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
19
Note that the load is only one gate capacitance:
t = RCL = R
gm
wT
=
Av
wT
»
2
CML speed ~ 2.5 times faster than static CMOS
wT
n-channel ac simulation
to determine fT:
CML buffer transient simulation:
IG
ID
t = 8ps »
2.9
wT
fT = 57GHz
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
20
Typical Vswing: 0.3 ×VDD
• Should be large enough to allow sufficient gain-bandwidth product.
• Should be small enough to prevent transistors from going into triode.
* CML will still work in triode (unlike BJT), but there is no additional
speed benefit.
Vswing = ISS R
Once Vswing has been chosen, designer can trade off between gain &
bandwidth by parameterizing between R & ISS:
t = R(gWLCox )
Higher speed: ISS
R
Av = R mCox
Higher gain:
R
EECS 270C / Winter 2016
W
L SS
I
Prof. M. Green / U.C. Irvine
ISS
21
Other Benefits of CML Gates
1.
Constant current bias  VDD / VSS bounce greatly reduced
ISS
KCL sets this current to be nearly constant.
ISS
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
22
VDD
¢
data in
data out
clock in
clock out
VSS
¢
Rs = 5 Ls = 5nH
clock out
VDD
¢
Rs = 0
Ls = 0
VSS
¢
clock out
Rs = 5
Ls = 5nH
EECS 270C / Winter 2016
data out
Prof. M. Green / U.C. Irvine
23
2. Non-inverting buffer available without additional delay:
CMOS:
tp
2tp
inverter
buffer
CML:
Vout+
Vout -
Vout- Vout+
Vin-
Vin+
buffer
inverter
EECS 270C / Winter 2016
Vin-
Vin+
Prof. M. Green / U.C. Irvine
24
Fanout & Scaling of CML Gates
R
Vout-
1x
=
Vin+
W
L
R
Vout+
W
L
Vin-
ISS
R/n
Vout-
R/n
Vout+
W
L
W
n´
L
nx
=
Vin+
n´
Vin-
All voltages unchanged from unit-sized buffer.
Currents & power increase by factor of n.
nISS
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
25
For fanout of n:
t = nCL R
mn
=
V
2 swing
t ng L
Av2
 increases linearly with fanout.
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
26
From interconnect, etc.; assumed not to scale with buffer sizes
æ C ö
t = nCL +Cp × R / n = gWLCox R × çç1+ p ÷÷
è nCL ø
(
)(
A = m nC
nW
ox L
2
v
)
( nISS ) × ( R / n)
2
= mnCox WL I SS R2
-1
æ
Cp ö
A
mn
= 2 Vswing × ç1+
÷
t gL
è nCL ø
2
v
(
)
Should set n » 0.1× Cp / CL to minimize
degradation due to interconnect capacitance
Power (proportional to n) determined primarily by interconnect capacitance!
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
27
Sub-micron MOSFETs obey square-law characteristics only in a limited region!
ID
ID
Mobility reduction (linear)
+
VGS _
Square-law behavior
Weak inversion (exponential)
VGS
CML buffer design procedure:
1.
Determine largest allowable ISS (usually limited by electromigration constraints)
2.
Choose “unit-sized” n-channel transistor (typically W/L=20)
3.
Run a series of simulations to determine optimum value of R:
R too small: full current switching not achieved
R too large: slower than necessary
4.
Choose minimum scaling factor after laying out some test buffers of various
sizes and determining approximate value of interconnect capacitance Cp.
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
28
1. Determine largest allowable ISS
standard layout
shared drain
(1/2 diffusion capacitance)
ID £ I max
Imax independent of W
determined by electromigration limits
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
29
CML Design Procedure
Example
Choose: ISS = 400mA
R = 900
ISSR = 360mV
tp = 10ps
R too small
W
4 mm
=
L 0.18 mm
R = 1200
ISSR = 480mV
tp = 12ps
*R optimum*
R = 1500
ISSR = 600mV
tp = 14ps
R too large
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
30
Parameterizing Between Gain & Bandwidth
ISS = 100 µA
R = 4.8 k
Av = 9.3 dB
BW = 2.6 GHz
ISS = 200 µA
R = 2.4 k
Av = 7.1 dB
BW = 5.5 GHz
ISS = 400 µA
R = 1.2 k
Av = 3.9 dB
BW = 11.5 GHz
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
31
Parameterized CML Buffer
R·
GBW
GSCALE · MSCALE
W
· GSCALE · MSCALE
L
ISS ·
GSCALE · MSCALE
GBW
GSCALE: Global scaling parameter
(depends on Cp)
MSCALE: Local scaling parameter
(depends on fanout or bit rate)
GBW:
Gain-bandwidth parameter
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
32
CML with p-channel Active Load
Can be used if linear resistors
are not available.
p-channel load transistors operates in triode region:
Increased capacitance and mismatch result
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
33
Capacitance Comparison (1)
Poly resistor:
p-channel MOSFET:
1
C » Cpoly -sub
2
1
C » Cdepletion + Cchannel -gate + Cchannel -sub
2
(
)
gate
channel
sub
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
34
Capacitance Comparison (2)
(Numbers based on TSMC 180nm CMOS process)
Cpoly-sub  Cchannel-sub : 0.13 fF/ m2
Cdepletion : 1.20 fF/ m2
Cchannel-gate : 7.80 fF/ m2
1
C » Cpoly -sub
2
= 0.1 fF
Poly resistor: Wpoly = 0.6
Lpoly = 2.5
p-channel MOSFET:
Wchannel = Wdiff = 2.5 µm
Lchannel = 0.18 µm
Ldiff = 0.3 µm
C » Cdepletion +
=
EECS 270C / Winter 2016
0.9 fF
(
)
1
Cchannel -gate + Cchannel -sub
2
+ 1.8 fF + .03 fF
= 2.8 fF
Prof. M. Green / U.C. Irvine
35
Capacitance Comparison (3)
R = 1.2 k
s = 235  
Wr = 0.6 µm
Lr = 2.5 µm
Cres = 0.1 fF
M1
Wp = 2.5 µm
Ldiff = 0.3 µm
Cd2 = 2.8 fF
M1
M2
M2
M1
M1
Cd1 = 3.7 fF
Cg1 = 5.8 fF
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
36
Pulse Response Comparison
PWin = 100ps
resistor load
R = 1.2 k
td = 16 ps; PWout = 100 ps
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
p-channel load
(W/L)p = 2.5 µm / 0.18 µm
td = 20 ps; PWout = 98 ps
37
Eye Diagram Comparison
including mismatch effects
resistor load
sR
R
p-channel load
s ID
= 1.5% mismatch
ID
= 4% mismatch
160mV gate-referred mismatch
DCD
ISI
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
38
Series-Gated CML Topology
XOR gate:
MA
MA
MA
MB
MA
MB
Common-mode voltage of BP/N critical:
• Too low  current source transistor biased in triode
• Too high  Transistors MB biased in triode
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
39
Series-Gated CML (2)
VS
I1
BP
I2
BN
VBP -VBN
I1 - I2
ISS
Transistors should be biased in saturation
to realize maximum gm .
VBP -VBN
Slope = gm
Especially important when gate voltages exhibit
slow slew rates
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
-ISS
40
IBP - IBN
VB(cm) = 1.0
VB(cm) = 1.3
VB(cm) = 1.6
DC current:
IBP - IBN
VB(cm) = 1.3
VB(cm) = 1.0
VBP -VBN
Transient response:
(400mV amplitude sine
wave applied to BP/BN)
VB(cm) = 1.6
t
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
41
Level-Shifting CML Buffer
Used to drive clock inputs
of series-gated CML gates
VDD
Output levels:
+
ISS Rcm
_
Vlow
R
(
= (V
)
) -I
Vhigh = VDD - ISSRcm
Rcm
DD
- ISSRcm
SS
R
Vswing = ISSR
ISS
• DC levels shifted down by ISSRcm
• Vswing unchanged
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
42
R
CML Select Circuit
Be reassigning the inputs, the XOR can be transformed into a Select
circuit. Used in a 2:1 multiplexer.
R
SELA
R
OUTP
OUTN
AP
AN
BP
SELA
BN
SELB
ISS
EECS 270C / Winter 2016
AP/N
BP/N
OUTP/N
Prof. M. Green / U.C. Irvine
43
CML Latch
By setting BP/N = OUTP/N, we can construct a CML latch:
OUTP
OUTN
DP
DN
CKP
CKN
ISS
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
44
CML D Flip-Flop
XP
OUTP
XN
OUTN
DP
DN
CKP
XP
CKN
XN
CKN
CKP
CKP/N
Output OUTP/N is synchronized with
CKP/N falling edge.
DP/N
OUTP/N
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
45
CML Latch Design Considerations
IGG
R
R
slope=1/rgg
VGG
1
ISS
2
dc operating points
VGG
Necessary criterion for bistability:
IGG
rgg =
2
2R
=
<0
1/ R - gm 1- gm R
at middle operating point
(Equivalent to loop gain = gmR > 1)
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
46
Avoiding Latch Transparency
gm R > 1
XP/N
gm R » 1
gm R £ 1
“transparent” latch
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
47
QIN
XN
DP
XP
QIP
OUTP
OUTN
DN
CKP
XP
QIP
CKN
QIN
XN
CKN
CKP
GBW parameter
can be increased to
ensure bistability.
R=1000
gmR > 1
R=800
gmR » 1
R=600
gmR < 1
EECS 270C / Winter 2016
Prof. M. Green / U.C. Irvine
48
Related documents