Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Frequency Detection of CDRs (1) Recall that faster PLL locking can be accomplished by use of a phase-frequency detector (PFD): Vin Vup -Vdn Vup 4p 2p +2 +4 p Vdn Vf K pd = Vswing p fin - fout 2Vswing 2p Unfortunately this PFD does not work for the case where Vin is a random data sequence, i.e., in a CDR. EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 1 Frequency Detection of CDRs (2) In general, conventional CDR PDs do not make good frequency detectors. There are three general techniques to increase frequency acquisition range: 1. A separate frequency acquisition loop with a reference clock. 2. Quadricorrelator. 3. Rotational frequency detector. EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 2 Frequency Detection of CDRs (3) 1. Frequency acquisition loop with a reference clock Freq. Acquisition Loop (CMU) lock detect clock divider phasefrequency detector charge pump Ref. Clock Multiplexer Input Data CDR phase detector VCO trans. block Recovered Clock D Q EECS 270C / Winter 2016 Retimed Data CDR Loop Prof. M. Green / U.C. Irvine J. Cao et al., “OC-192 transmitter and receiver in 0.18m CMOS,” JSSC. vol. 37, pp. 1768-1780, Dec. 2002. 3 Frequency Detection of CDRs (4) 2. Quadricorrelator (referenceless) Figures from: H. Ransijn and P. O’Connor, “A PLL-based 2.5-Gb/s GaAs clock and data regenerator IC,” IEEE J. SolidState Circuits, vol. 26, Oct. 1992, pp. 1345-1353. EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 4 Frequency Detection of CDRs (5) 3. Rotational Frequency Divider (referenceless) Figures from: D. Dalton et al., “A 12.5-Mb/s to 2.7-Gb/s continuousrate CDR with automatic frequency acquisition and data-rate feedback,” IEEE J. Solid-State Circuits, vol. 40, Dec. 2005, pp. 2713-2725. EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 5 Advantages of Using CMOS • Compact (shared diffusion regions) • Very low static power dissipation • High noise margin (nearly ideal inverter voltage transfer characteristic) • Very well modeled and characterized • Mechanically robust • Lends itself very well to high integration levels • “Analog” CMOS process usually includes non-salicided poly layer for linear resistors. • SiGe BiCMOS is very useful but is generations behind currently available standard CMOS EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 6 Transistor fT Calculation VDD ig id vgs fT is the frequency at which gm = mCox Cgs W VGS -Vt L ( ) Cgs = gWLCox VGS id gm = becomes i g 2pfTCgs wT = 2pfT = 1. m V -Vt ) 2 ( GS gL fT gives a fundamental speed measure of a technology. 0.25 µm CMOS: fT ~ 23GHz (VDD = 2.5V) 0.18 µm CMOS: fT ~ 57GHz (VDD = 1.8V) EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 7 Static CMOS propagation delay: Wp Lp Vout Vin Wn Ln Wp Lp Wn Ln t fall » CL W mnCox n (VDD -Vt ) Ln t rise » CL W m pCox p (VDD -Vt ) Lp Assume: Wp = 3Wn for optimum noise margin. Lp = Ln = Lmin t rise = t fall = gLmin (Wp +Wn )Cox mnCox gL2min = mn Wn (VDD -Vt ) Lmin æ W ö 1 4 = çç1+ p ÷÷ è Wn ø VDD -Vt wT Operation is 4X slower than theoretical maximum due to n-channel & p-channel gates connected in parallel. EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine (Actual values will be higher due to high diffusion capacitances present in submicron transistors.) 8 Verifying with simulation: n-channel ac simulation to determine fT: CMOS inverter transient simulation: IG Vin Vout ID fT = 57GHz EECS 270C / Winter 2016 t = 18ps » Prof. M. Green / U.C. Irvine 6.4 wT 9 Single-Ended Signaling in CMOS VDD Vin IDD Vin Vout Vout ISS ISS sub IDD VSS Series R & L cause supply/ground bounce. Resulting modulation of transistor Vt’s result in pattern-dependent jitter. EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 10 Effect of Supply/Ground Bounce on Jitter VDD ¢ data in data out clock in clock out VSS ¢ Rs = 5 Ls = 5nH VDD ¢ clock out Rs = 0 Ls = 0 VSS ¢ clock out Rs = 5 Ls = 5nH EECS 270C / Winter 2016 data out Prof. M. Green / U.C. Irvine 11 Summary of CMOS Gate Performance Advantages of static CMOS gates: 1. 2. 3. Simple & straightforward design. Robust operation. Nearly zero static power dissipation. Disdvantages of static CMOS gates: 1. 2. 3. Full speed of transistors not exploited due to n-channel & pchannel gate in parallel at load. Single-ended operation causes current spikes leading to VDD/VSS bounce. Single-ended operation also highly sensitive to VDD/VSS bounce leading to jitter. EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 12 Current-Mode Logic (CML) CML inverter: VDD R R Vout+ • Based on conventional differential pair Vout- CL • Differential operation CL Vin+ Vin- ISS EECS 270C / Winter 2016 • Inherent common-mode rejection • Very robust in the presence of commonmode disturbances (e.g., VDD / VSS bounce) Prof. M. Green / U.C. Irvine 13 DC Biasing of CML Inverter VDD 1 ISS R 2_ 1 ISS R 2 _ VOUT(DC ) VOUT(DC ) R VIN(DC ) + W L VGS _ 1 Vin(DC ) =Vout (DC ) =VDD - ISS R 2 + + W L VS _ ISS VBIAS EECS 270C / Winter 2016 R To keep current source transistor in saturation: VIN(DC ) + VGS VS > VBIAS -Vt VS =Vin(DC ) -VGS Vin(DC) > VBIAS + (VGS -Vt ) Prof. M. Green / U.C. Irvine 14 Logic Swing & Gain of CML Inverter Vhigh =VDD Vlow =VDD - ISS R VDD R R VDD-ISSR ISS VDD CL Vswing = ISS R VDD 0 CL W L W L ISS To achieve full current switching: VDD-ISSR ( Vswing ³ VGS -Vt Vswing Vmin Vswing Vmin EECS 270C / Winter 2016 =R ) |I D =ISS = 2ISS mnC W ox L ºVmin 1 W mCox ISS 2 L > 1 for correct operation Prof. M. Green / U.C. Irvine 15 Small-Signal Behavior of CML Inverter Small-signal voltage gain: Av = gm R = R mCox Recall Vswing Vswing Vmin Vmin = =R Av 2 EECS 270C / Winter 2016 rise/fall time constant: W L SS I 1 W mCox ISS > 1 2 L t = RCL (Assuming fanout of 1) CL = gCoxWL t = R(gWLCox ) Av ³ 2 for full switching Note: rising & falling time constants are the same Prof. M. Green / U.C. Irvine 16 Speed vs. Gain in Logic Circuits fast input transition: step response determined by slow input transition: step response determined by Av Largest possible gain-bandwidth product is desirable. EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 17 Relationship between Av , , and Vswing Av = R mnCox Av2 = mnCox W L SS I W m ISSR2 = n2 × RgWLCox × ISSR L gL ( )( t mn = 2 Vswing t gL Av2 ) Vswing mn A = 2 × t × Vswing gL 2 v “large-signal” gain-bandwidth product Larger logic swing preferred for higher gain-bandwidth product Larger Vswing Larger Vmin smaller W/L larger current density EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 18 Thought Experiment R R R R W L W L W L W L ISS ISS Suppose we decrease current density by increasing W/L: W 1 ´ 2 Þ Vmin ´ , CL ´ 2 L 2 R´ 1 t = RC ´ 2 Slower! 2 EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 19 Note that the load is only one gate capacitance: t = RCL = R gm wT = Av wT » 2 CML speed ~ 2.5 times faster than static CMOS wT n-channel ac simulation to determine fT: CML buffer transient simulation: IG ID t = 8ps » 2.9 wT fT = 57GHz EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 20 Typical Vswing: 0.3 ×VDD • Should be large enough to allow sufficient gain-bandwidth product. • Should be small enough to prevent transistors from going into triode. * CML will still work in triode (unlike BJT), but there is no additional speed benefit. Vswing = ISS R Once Vswing has been chosen, designer can trade off between gain & bandwidth by parameterizing between R & ISS: t = R(gWLCox ) Higher speed: ISS R Av = R mCox Higher gain: R EECS 270C / Winter 2016 W L SS I Prof. M. Green / U.C. Irvine ISS 21 Other Benefits of CML Gates 1. Constant current bias VDD / VSS bounce greatly reduced ISS KCL sets this current to be nearly constant. ISS EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 22 VDD ¢ data in data out clock in clock out VSS ¢ Rs = 5 Ls = 5nH clock out VDD ¢ Rs = 0 Ls = 0 VSS ¢ clock out Rs = 5 Ls = 5nH EECS 270C / Winter 2016 data out Prof. M. Green / U.C. Irvine 23 2. Non-inverting buffer available without additional delay: CMOS: tp 2tp inverter buffer CML: Vout+ Vout - Vout- Vout+ Vin- Vin+ buffer inverter EECS 270C / Winter 2016 Vin- Vin+ Prof. M. Green / U.C. Irvine 24 Fanout & Scaling of CML Gates R Vout- 1x = Vin+ W L R Vout+ W L Vin- ISS R/n Vout- R/n Vout+ W L W n´ L nx = Vin+ n´ Vin- All voltages unchanged from unit-sized buffer. Currents & power increase by factor of n. nISS EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 25 For fanout of n: t = nCL R mn = V 2 swing t ng L Av2 increases linearly with fanout. EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 26 From interconnect, etc.; assumed not to scale with buffer sizes æ C ö t = nCL +Cp × R / n = gWLCox R × çç1+ p ÷÷ è nCL ø ( )( A = m nC nW ox L 2 v ) ( nISS ) × ( R / n) 2 = mnCox WL I SS R2 -1 æ Cp ö A mn = 2 Vswing × ç1+ ÷ t gL è nCL ø 2 v ( ) Should set n » 0.1× Cp / CL to minimize degradation due to interconnect capacitance Power (proportional to n) determined primarily by interconnect capacitance! EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 27 Sub-micron MOSFETs obey square-law characteristics only in a limited region! ID ID Mobility reduction (linear) + VGS _ Square-law behavior Weak inversion (exponential) VGS CML buffer design procedure: 1. Determine largest allowable ISS (usually limited by electromigration constraints) 2. Choose “unit-sized” n-channel transistor (typically W/L=20) 3. Run a series of simulations to determine optimum value of R: R too small: full current switching not achieved R too large: slower than necessary 4. Choose minimum scaling factor after laying out some test buffers of various sizes and determining approximate value of interconnect capacitance Cp. EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 28 1. Determine largest allowable ISS standard layout shared drain (1/2 diffusion capacitance) ID £ I max Imax independent of W determined by electromigration limits EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 29 CML Design Procedure Example Choose: ISS = 400mA R = 900 ISSR = 360mV tp = 10ps R too small W 4 mm = L 0.18 mm R = 1200 ISSR = 480mV tp = 12ps *R optimum* R = 1500 ISSR = 600mV tp = 14ps R too large EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 30 Parameterizing Between Gain & Bandwidth ISS = 100 µA R = 4.8 k Av = 9.3 dB BW = 2.6 GHz ISS = 200 µA R = 2.4 k Av = 7.1 dB BW = 5.5 GHz ISS = 400 µA R = 1.2 k Av = 3.9 dB BW = 11.5 GHz EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 31 Parameterized CML Buffer R· GBW GSCALE · MSCALE W · GSCALE · MSCALE L ISS · GSCALE · MSCALE GBW GSCALE: Global scaling parameter (depends on Cp) MSCALE: Local scaling parameter (depends on fanout or bit rate) GBW: Gain-bandwidth parameter EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 32 CML with p-channel Active Load Can be used if linear resistors are not available. p-channel load transistors operates in triode region: Increased capacitance and mismatch result EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 33 Capacitance Comparison (1) Poly resistor: p-channel MOSFET: 1 C » Cpoly -sub 2 1 C » Cdepletion + Cchannel -gate + Cchannel -sub 2 ( ) gate channel sub EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 34 Capacitance Comparison (2) (Numbers based on TSMC 180nm CMOS process) Cpoly-sub Cchannel-sub : 0.13 fF/ m2 Cdepletion : 1.20 fF/ m2 Cchannel-gate : 7.80 fF/ m2 1 C » Cpoly -sub 2 = 0.1 fF Poly resistor: Wpoly = 0.6 Lpoly = 2.5 p-channel MOSFET: Wchannel = Wdiff = 2.5 µm Lchannel = 0.18 µm Ldiff = 0.3 µm C » Cdepletion + = EECS 270C / Winter 2016 0.9 fF ( ) 1 Cchannel -gate + Cchannel -sub 2 + 1.8 fF + .03 fF = 2.8 fF Prof. M. Green / U.C. Irvine 35 Capacitance Comparison (3) R = 1.2 k s = 235 Wr = 0.6 µm Lr = 2.5 µm Cres = 0.1 fF M1 Wp = 2.5 µm Ldiff = 0.3 µm Cd2 = 2.8 fF M1 M2 M2 M1 M1 Cd1 = 3.7 fF Cg1 = 5.8 fF EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 36 Pulse Response Comparison PWin = 100ps resistor load R = 1.2 k td = 16 ps; PWout = 100 ps EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine p-channel load (W/L)p = 2.5 µm / 0.18 µm td = 20 ps; PWout = 98 ps 37 Eye Diagram Comparison including mismatch effects resistor load sR R p-channel load s ID = 1.5% mismatch ID = 4% mismatch 160mV gate-referred mismatch DCD ISI EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 38 Series-Gated CML Topology XOR gate: MA MA MA MB MA MB Common-mode voltage of BP/N critical: • Too low current source transistor biased in triode • Too high Transistors MB biased in triode EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 39 Series-Gated CML (2) VS I1 BP I2 BN VBP -VBN I1 - I2 ISS Transistors should be biased in saturation to realize maximum gm . VBP -VBN Slope = gm Especially important when gate voltages exhibit slow slew rates EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine -ISS 40 IBP - IBN VB(cm) = 1.0 VB(cm) = 1.3 VB(cm) = 1.6 DC current: IBP - IBN VB(cm) = 1.3 VB(cm) = 1.0 VBP -VBN Transient response: (400mV amplitude sine wave applied to BP/BN) VB(cm) = 1.6 t EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 41 Level-Shifting CML Buffer Used to drive clock inputs of series-gated CML gates VDD Output levels: + ISS Rcm _ Vlow R ( = (V ) ) -I Vhigh = VDD - ISSRcm Rcm DD - ISSRcm SS R Vswing = ISSR ISS • DC levels shifted down by ISSRcm • Vswing unchanged EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 42 R CML Select Circuit Be reassigning the inputs, the XOR can be transformed into a Select circuit. Used in a 2:1 multiplexer. R SELA R OUTP OUTN AP AN BP SELA BN SELB ISS EECS 270C / Winter 2016 AP/N BP/N OUTP/N Prof. M. Green / U.C. Irvine 43 CML Latch By setting BP/N = OUTP/N, we can construct a CML latch: OUTP OUTN DP DN CKP CKN ISS EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 44 CML D Flip-Flop XP OUTP XN OUTN DP DN CKP XP CKN XN CKN CKP CKP/N Output OUTP/N is synchronized with CKP/N falling edge. DP/N OUTP/N EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 45 CML Latch Design Considerations IGG R R slope=1/rgg VGG 1 ISS 2 dc operating points VGG Necessary criterion for bistability: IGG rgg = 2 2R = <0 1/ R - gm 1- gm R at middle operating point (Equivalent to loop gain = gmR > 1) EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 46 Avoiding Latch Transparency gm R > 1 XP/N gm R » 1 gm R £ 1 “transparent” latch EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 47 QIN XN DP XP QIP OUTP OUTN DN CKP XP QIP CKN QIN XN CKN CKP GBW parameter can be increased to ensure bistability. R=1000 gmR > 1 R=800 gmR » 1 R=600 gmR < 1 EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 48