Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Trigonometry
( Lenka Šturmankinová, Erika Veselová )
Oriented angle
- an ordered quadruple: [ initial side, terminal side, orientation, size ]
Orientation: + ...counterclockwise
- ...clockwise
XVY = [VX, VY, +, 60]
Arch measure
Definition: The angle has measure 1 rad, if the length of the arch defined by on the unit
circle is 1 ( = radius of the unit circle ).
Observation: || = 1 rad length of the arch = radius of the circle.
Measure of [rad] = length of the arch on the unit circle.
Oriented angle in the coordinate system
M
M
Mapping of the set R of all real numbers onto the unit circle ( assignment of points M of the
unit circle to real numbers ):
- initial side of the oriented angle R ... x+
M unit circle terminal side of the oriented angle
1
Trigonometric functions
Definition: Let R, let M [xM, yM] be the point on the unit circle assigned to the
oriented angle φ. Then: sin = yM
cos = xM
sin
tg =
cos
cos
cotg =
sin
M
yM
xM
Observations :
1. For 0 < φ < π/2 ( acute angles φ ) values: sinφ , cosφ, tgφ , cotgφ according to this
definition coincide with the values in right triangle ( sin = a/c, cos = b/c, tg = a/b,
cotg = b/a ).
y
sin φ = M
1
xM
cos φ =
1
sin y M
tg φ =
cos xM
cos xM
cotg φ =
sin y M
2. D (sin) = R = D (cos)
D (tg) = R – { φ R ; cos φ = 0 }
D (cotg) = R – { φ R ; sin φ = 0 }
sin
2 1 , tg , cotg 0, cotg ...analogically undefined )
0
2
2
cos
2
3. Geometrical interpretation of functions sin, cos: by the definition – the coordinates of Mφ.
Geometrical interpretation of functions tg, cotg:
yM
M A
tg φ =
M A
xM
0A
( Thus: tg
cotg φ =
xM
yM
M B
0B
MB
2
Geometrical interpretation: tg φ1 = the coordinate of the intercept M‘ of the terminal side
of φ1 with the real axis R‘ for tangent.
M’
M1
yM
M2
2
1
tg 1
A
xM
R’
tg 2
cotg φ = the coordinate of the intercept of the terminal side of φ
with the real axis R‘‘ for cotangent
R’’
-1
1
0
xM
4. H (sin) = -1,1 = H (cos), H (tg) = R = H (cotg).
5. Periodicity of sin, cos:
φ є R : sin (φ+2 ) = sin φ = sin (φ-2 )
cos (φ+2 ) = cos φ = cos (φ-2 )
sin
= 1, sin = -1
2
2
cos 0 = 1, cos = -1
sin(/2) = 1, but there exists no (/2; /2+2) such that sin =1 ( for cos
analogically ).
That proves that 2 is the minimal length of the interval of repetition sin, cos are
periodic with the period 2 .
3
M = M+2
+ 2
6. Periodicity of tg, cotg :
φ R : tg 2
sin 2 sin
tg , but a = 2 is not the least length of the
cos 2 cos
repetition interval:
sin sin sin
tg ( + ) =
= tg ,
cos cos cos
cos
cotg ( + ) =
= cotg
sin
tg, cotg are periodic with the period ( follows immediately from the geom. interpretation ).
„Basic period“ of tg is the interval (-/2, /2).
„Basic period“ of cotg is the interval (0, ).
M
+
7. sin (-φ) = - sin φ
... ODD FUNCTION
cos (-φ) = cos φ
... EVEN FUNCTION
sin sin
...ODD FUNCTION
tg
tg
cos cos
cos cos
cotg (-φ) =
cotg φ ...ODD FUNCTION
sin sin
4
8. tg φ . cotg φ=
sin cos
1
cos sin
1 = |sin |2+ |cos |2 PYTHAGOREAN FORMULA ( RULE ): 1 = sin2 + cos2
( 1= (sin )2 + (cos )2 )
1
sin
cos
Functions inverse to trigonometric functions
Observation: Trigonometric functions are periodic trigonometric functions are not 1-1
trigonometric functions have not inverse functions.
Notation: Let us denote by f1, f2, f3, f4 the following functions:
f1: y = sin x for x -/2;/2
f2: y = cos x for x 0;
f3: y = tg x for x (-/2;/2)
f4: y = cotg x for x ( 0; )
Observation: f1, f2, f3, f4 are 1-1 f1, f2, f3, f4 have their inverse functions f1-1, f2-1, f3-1, f4-1and
D(f1) = -/2;/2 = H(f1-1), H(f1) = -1;1 = D(f1-1),
D(f2) = 0; = H(f2-1), H(f2) = -1;1 = D(f2-1),
D(f3) = (-/2;/2) = H(f3-1), H(f3) = R = D(f3-1),
D(f4) = ( 0; ) = H(f4-1), H(f4) = R = D(f4-1).
Definition: Let f1, f2, f3, f4 be the functions according to the former notation. The functions
arcsin, arccos, arctg, arccotg are defined by the formulas
arcsin = f1-1: y = arcsin x = f1-1(x)
arccos = f2-1: y = arccos x = f2-1(x)
arctg = f3-1: y = arctg x = f3-1(x)
arccotg = f4-1: y = arccotg x = f4-1(x).
Consequence: y = arcsin x ( x = sin y y -/2;/2 )
y = arccos x ( x = cos y y 0; )
y = arctg x ( x = tg y y (-/2;/2) )
y = arccotg x ( x = cotg y y ( 0; ) )
D(arcsin) = -1;1 = H(sin), H(arcsin) = -/2;/2
D(arccos) = -1;1 = H(cos), H(arccos) = 0;
D(arctg) = R = H(tg), H(arctg) = (-/2;/2)
D(arccotg) = R = H(cotg), H(arccotg) = ( 0; ).
5
Sine, cosine rules
Theorem: For each triangle ABC with the sides a, b, c, corresponding angles , , and the
circumradius r the following formulas hold:
a/sin = b/sin = c/sin =2r ……………………………………………………..…... sine rule
c2 = a2 + b2 – 2abcos, a2 = b2 + c2 – 2bccos, b2 = a2 + c2 – 2accos ……...… cosine rule
Area of a triangle
Theorem: For the area S of each triangle ABC with the sides a, b, c, corresponding angles
, , , the circumradius r, the radius of the circle inscribed and the perimeter a+b+c=2s
the following formulas hold:
S = (absin) / 2 = (c2sinsin) / (2sin) = abc / 4r = s,
S2 = s(s-a)(s-b)(s-c) ( Heron’s formula ).
6
[ cos ; sin ]
REMEMBER FOREVER !
2
= the side of the ( smaller ) square with the diagonal of length 1
2
1
= one half of the side of the isosceles triangle with the side of length 1
2
3
= the altitude of the isosceles triangle with the side of length 1
2
7
Trigonometric identities:
sin cos
2
cos sin
2
sin x y sin x cos y cos x sin y
sin x y sin x cos y cos x sin y
cos x y cos x cos y sin x sin y
cosx y cos x cos y sin x sin y
tan x tan y
1 tan x tan y
1 tan x tan y
cot x y
tan x tan y
tan x y
sin 2 x 2 sin x cos x
cos 2 x cos 2 x sin 2 x
2 tan x
1 tan 2 x
1 tan 2 x
cot 2 x
2 tan x
tan 2 x
sin
x
1 cos x
2
2
cos
x
1 cos x
2
2
tan
x
1 cos x
2
1 cos x
cot
x
1 cos x
2
1 cos x
x y
x y
cos
2
2
x y
x y
sin x sin y 2 cos
sin
2
2
x y
x y
cos x cos y 2 cos
cos
2
2
x y
x y
cos x cos y 2 sin
sin
2
2
sin x sin y 2 sin
For technical reasons ( properties of the editor of equations ) the notation “tan” and “cot” is used for tg and cotg.
8