Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Name _________________________________________ Date ____________________ End-of-Course Test 1. Graph y = 2(x + 1)2 – 3. Identify the vertex. 2. Solve the equation x2+ – 5x + 4 = 0. 3. Write the product (4 – 7i)(–2 + 3i) as a complex number in standard form. 4. Solve 2x2 + 6x + 3 = 0 by completing the square. 5. Use the quadratic formula to solve the equation 4x2 – 4x – 11 = 0. 64m 3 6. Simplify 6 27 n 2/3 . 7. Find the product (x – 2)(3x + 2)(x + 2). 8. Factor completely 54y3 – 128. 9. Divide 2x4 + 2x3 – 13x2 – x + 6 by x + 2 using synthetic division. 10. Find all the real zeros of f(x) = 2x4 + 5x3 – 11x2 – 20x + 12. 11. Write the expression 3 81xz4 in simplest form. Assume all variables 8x 2 y are positive. 12. Find an equation for the inverse of the relation y = 7x – 4. f ( x) f ( x) , and state the domain of . g ( x) g ( x) 14. Given f(x) = 2x – 3 and g(x) = x2 – 2, find g(f(5)). 13. Let f(x) = 3x2 and g(x) = x3/2. Find 15. Solve the equation 1 16. Graph y = –2 2 17. Expand log 3 4 x2 8 = 2. x1 2 x3 . 5 y + 3. State the domain and range. 18. Evaluate log2 64. 19. Use the change-of-base formula to evaluate log2 17. 20. Solve the equation 42x – 1 = 360. 5 21. Graph y = + 2. State the domain and range. x 1 9 x 27 4 x 2 16 22. Simplify the product . • 2 x 2 8 x 8 6 x 18 5 3 2 2 x x . 23. Simplify the complex fraction 2 5 3 x2 x 3 6 24. Solve 2 x 9 x 3 25. Determine whether the function g(x) = 2x3 – 3x is even, odd, or neither. 43 26. Find the sum of the series (8 n) . n 40 6 27. Find the sum of the series 2k . k 1 28. Find the 9th term of the geometric sequence 10, –20, 40, –80,. … 29. Use the formula for the sum of an infinite geometric series to write the repeating decimal 0.729729729… as a fraction in lowest terms. 30. Write a recursive rule for the sequence 3, 5.5, 8, 10.5, 13, … . 31. Convert 7 to degrees. 6 32. Find the values of the other 5 trigonometric functions of x if 5 tan x = – and cos x < 0. 12 33. Solve ΔABC with B = 49°, C = 90°, and c = 13.3. 34. Find c in ΔABC where A = 64°, C = 55°, and b = 18. 35. Evaluate the function cos (–150°) without using calculator. 36. Write an equation of the graph of y = sin 3πx translated down 2 units and right 3 units, and then reflected in the x-axis. Answers 21. End-of-Course Test ; domain: all real numbers except –1; range: all real numbers except 2 ; (–1, –3) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 1,4 13 + 26i 3 3 2 1 2 3 2 16n4 9m 2 3x2 + 2x2 – 12x – 8 2(3y – 4)(9y2 + 12y + 16) 28 2x3 – 2x2 – 9x + 17 – x2 1 –3, –2, , 2 2 3z 3 2 x 2 y 2 z 2 xy x4 7 1/2 3x ; all positive real numbers 47 ±2 6 16. ; domain: all real numbers; range: y ≤ 3 17. log3 2 + 3 log3 x – log3 5 – 18. 19. 20. 6 4.09 2.62 3( x 2) ( x 2) 2x 3 23. 3x 2 7 24. 2 25. Add 26. –134 27. 126 28. 2560 27 29. 37 30. a1 = 3, an = an – 1 + 2.5 31. 210° 5 12 13 32. sin x = , cos x = , csc x = , 13 5 13 13 12 sec x = , cot x = A = 41°, a = 12 5 8.7, b = 10.0 33. 16.86 3 34. 2 35. y = –sin (3πx – 3) + 2 22. 1 log3 y 2