* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Advanced Math - January 2013
Survey
Document related concepts
Transcript
Advanced Math - January 2013 Name_________________________________________ Hour________________ Date______________ Preliminary Chapter (Chapter P) Use 1. and to find the indicated intersection or union. 2. Graph each interval and write the interval in set-builder notation. 3. 4. 5. Graph each set and write the set in interval notation. 6. 7. 8. Evaluate or simplify each expression. 9. 11. when 10. and 12. when , and Evaluate or simplify each exponential expression. 15. 14. 13. 16. 17. 18. 19. 22. 23. 24. 20. 21. Evaluate or simplify each exponential 25. expression. 26. 27. Simplify each radical expression. Assume variables represent real numbers. 28. 29. 30. b 31. 33. 32. Perform the indicated operation and express the result in standard form. 35. 34. 37. 36. Factor the following. 38. 39. 40. Factor the following. 41. 43. 42. Simplify each rational expression. 44. 45. 46. 47. Perform the indicated operation and write the answer in simplest form. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. Perform the indicated operation and 60. write the answer in simplest form. 61. 62. Factor: Chapter 1 Solve the following equations. Check your solutions. 1. 2. 3. 4. 5. 6. 7. Is the following a contradiction, a conditional or an identity? 8. Is the following a contradiction, a conditional or an identity? 9. Is the following a contradiction, a conditional or an identity? Given the graph of a quadratic equation, estimate the solutions (zeros/roots). 10. 11. 12. Graph the following quadratic equations and estimate the solutions (zeros/roots). 13. 14. 15. Solve the following quadratics by factoring. 16. 17. 18. Solve the following quadratics by 19. factoring. 20. 21. Solve the following quadratics using square roots. 22. 23. 24. Solve the following quadratics by completing the square. 25. 26. 27. Solve the following quadratics by 28. completing the square. 29. Solve the following quadratics using the quadratic formula. 31. 32. 30. 33. Find the value of the discriminant. Describe the type of roots for the following quadratics. 34. 35. 36. Solve each equation. Be sure to check your solution(s). 37. 38. 39. 40. 41. 42. Solve each equation. 43. Be sure to check your solution(s). 44. State the excluded value for each equation and then solve. 46. 47. Excluded Value(s): Excluded Value(s): 49. Excluded Value(s): 45. 48. Excluded Value(s): 50. Excluded Value(s): Chapter 2 Section 2.1 Find the distance between the set of points. 1. (6, 4) and (-8, 11) 2. (40, 32) and (36, 20) 1.)_________________ 2.)_________________ Find the midpoint between the set of points 3. (6, 4)� and (-8, 11) 3.)________________ 4. (40, 32) and (36, 20) 4.)________________ 5. (12, −2)� and (7, 2) 6. (5, 3)� and (-6, 9) 5.)________________ 6.)________________ Determine the center and radius of the circle with the given equation. 7. (x - 3)2 + (y + 7)2 = 64 8. (x + 8)2 + y2 = 81 Center:________________ Center:________________ Radius:________________ Radius:________________ 9. (x - 8)2 + (y - 9)2 = 13 Center:________________ Radius:________________ 10. (x - 2)2 + (y - 7)2 = 17 Center:________________ Radius:________________ Find an equation of a circle that satisfies the given conditions. Write your answer in standard form. 11. Center (-5, 2) and radius 7 12. Center (4, -3) and radius 12 11.)______________________ 12.)______________________ Find an equation of a circle that satisfies the given conditions. Write your answer in standard form. 13. Center ( 1, 3�), passing through (4, -1). � 13.)______________________ 14. Center(-2, 5), passing through (1, 7�) 14.)______________________ Find an equation of a circle that satisfies the given conditions. Write your answer in standard form. 15. The circle has a diameter with endpoints (2, 3) and (-4, 11) 15.)_______________________ 16. The circle has a diameter with endpoints (-2, 3) and (4, 3). � 16.)_______________________ Sections 2.2-2.3 State whether the equation defines y as a function of x. 18. y = x2 17. 2x + 4y = 8 17.)_______________ 18.)_______________ 20. y = x 3 19. y = 3 x� 19.)_______________ 20.)_______________ State whether the set of ordered pairs defines y as a function of x. 22. {(6, 3), (-7, 3), (8, 3), (9, 3)} 21. {(5, 2), (3, 7), (4, -3), (5, 6)} 21.)______________ 22.)________________ Evaluate the function. 23. Given f (x) x2 5 . a. f(-2) 23a.)_______________ b. f(0) c. f(3) 23b.)_______________ 23c.)_______________ Evaluate the function. 24. Given f(x) = 3x2 +1 a. f(-2) 24a.)_____________ b. f(0) c. f(3) 24b.)_____________ 24c.)_____________ Determine the domain of the function represented by the given equation. 25.)______________ 26. f(x) = x2 – 5x 25. f(x) = 2x + 5 26.)______________ Determine the domain of the function represented by the given equation. 27. f (x) 6 x 28. f (x) x 3 27.)______________ 28.)______________ 29. f (x) 4 x 6 30. f (x) 7 � x 8 29.)______________ 30.)______________ Find the real value or values of 𝒂 in the domain of 𝒇 for which f(a) equals the given number. 31. f(x) = 3x – 2; f(a) = 8 32. f(x) = 2 - 5x; f(a) = 7 31.)______________ 32.)______________ 33. 𝑓 𝑥� = 𝑥�2� − 3; 𝑓 𝑎� = −4 34. 𝑓 𝑥� = 𝑥�33. f(x) = x2 + 2x - 2; f(a) = 1 2|; f(a) = 6 33.)______________ 34. f(x) = |x + 34.)______________ Find the zeros, or x-intercepts, of f(x). 35. f(x) = 3x + 2 36. f(x) = 6 + 2x 35.)______________ 36.)______________ 37. f(x) = x2 – 5x – 24 38. f(x) = x2 + 4x - 21 37.)______________ 38.)______________ Find the slope of the line through the given points. 39. (8, -2), (-4, 10) 40. (-2, -7), (4, -9) 39.)______________ 40.)______________ Graph 𝒚 as a function of 𝒙 by finding the slope and y-intercept of each line. 41. 𝑦 = −3𝑥 + 42. 𝑦 = 41.) slope=________ 41.) y-int.=_________ 42.) slope=________ 42.) y-int.=_________ 43. 2𝑥 − 3𝑦 = 12 44. −3𝑥 + 5𝑦 = −15 43.) slope=________ 43.) y-int.=_________ 44.) slope=________ 44.) y-int.=_________ Find the equation of the indicated line in slope-intercept form. 45. y-intercept = (0, -5), slope = -17 46. y-intercept = (0, 2), slope = 6 45.)______________ 46.)______________ 47. Through (4, -6), slope = 12 48. Through (-5, -1), slope = -3 47.)______________ 48.) _____________ 47. Through (4, -6), slope = 1� Find the equation of the indicated line in slope-intercept form. 49. Through (5, -6) and (2, -8) 50. Through (-5, 6) and (-3, -4) 49.)______________ 50.)______________ Find the equation of the line, in slope-intercept form, that satisfies the given conditions. 51. The graph is parallel to the graph of 𝑦 = − 𝑥 + and passes through the point whose coordinates are (-4, 2). 52. The graph is parallel to the graph of 51.)______________ 3�𝑥 − 1 and passes through the point whose coordinates are (-3, -5). 52.)______________ 53. The graph is perpendicular to the graph of 3𝑥 − 2𝑦 = 5 and passes through the point whose coordinates are (-3, 4). 53.)______________ 54. The graph is perpendicular to the graph of 𝑦 = −𝑥 + 3 and passes through the point whose coordinates are (-5, 2). 55. Use the Vertical Line Test to determine which of the following graphs are functions. Write the letters of the graphs that ARE functions in the blank. 54.)______________ 55.)______________ A. B. C. D. Use the indicated graph to identify the intervals over which the function is increasing, decreasing or constant. 56. 57. Use the indicated graph to identify the intervals over which the function is increasing, decreasing or constant. 58. 59. Section 2.4 & Quadratic Transformations Use the equation of the quadratic function to determine (a) the vertex, (b) the max or min value of the vertex, (c) if the vertex is a max or min (circle either max or min), and (d) the equation for the axis of symmetry. 60. y 3 x 7 12 61. y ( x 4) 2 6 a.)____________________ a.)____________________ 2 [vertex] [vertex] b.)____________________ 2b.)____________________ [max or min value] c.) max / min [max or min value] c.) max / min [circle one] d.)___________________ [circle one] d.)___________________ [axis of symmetry] [axis of symmetry] Use the method of completing the square to find the standard form of the quadratic function. 62. y x 2 14 x 12 63. y x 2 8 x 12 63.)_____________________ 64.)_____________________ Use the method of completing the square to find the standard form of the quadratic function. 66. y 2 x 2 8 x 17 65. y 5x 2 20 x 7 65.)_____________________ 66.)_____________________ 67. y 3x 2 12 x 8 68. y 4 x 2 32 x 10 67.)_____________________ 68.)_____________________ Use the vertex formula 𝒙 = to determine the vertex. 79. 𝑓 𝑥� = 𝑥�69. f(x) = –x2 + 4x +1 Vertex:_________________ 70. f(x) = x2 -10x 69. 80. 𝑓 𝑥� = − 𝑥� Vertex:_________________ 70. Find the maximum or minimum value of the function. State whether it is a maximum or a minimum. Find the range of the function. 71. f(x) = -x2+ 6x + 2 71. Max/Min Value:_________________ Max. / Min. (circle one) Range:_______________________ 72. f(x) = x2+ 10x - 3 72. Max/Min Value:_________________ Max. / Min. (circle one) Range:_______________________ Use the parent function f(x) = x2 to graph the quadratic function 𝒈(𝒙). Identify the vertex of g(x). 73.) g(x) = -(x + 2)2 - 4 74.) g(x) = (x -5 )2 + 4 Vertex: g (x ) :_____________ Vertex: g (x ) :_____________ 75.) g(x) = 2(x - 1)2 - 3 Vertex: g (x ) :_____________ 76.) g(x) = (x + 3)2 - 5 Vertex: g (x ) :_____________ Section 2.6 77. Let f(x) = 3x3 – 4x2 +3 and g(x) = 2x2 – 6. Find the following: a) (f – g)(x) b) (f + g)(x) c) (f + g)(7) 77a. _______________ 77b. _______________ 77c. _______________ 78. Let f(x) = 3x +2 and g(x) = 2x – 4. Find the following: a) (f+ g)(x) b) (f g)(x) c) (f –g)(-4) 78a.________________ 78b. _______________ 78c. _______________ 2 79. Let f(x) = 4x -3 and g(x) = x +7. Find the following: a) (f(g(x)) b) g(f(x)) c) f(g(3)) 80. Let f(x) = 3x2 and g(x) = 6x -10. Find the following: a) (f(g(x)) b) g(f(x)) c) g(f(4)) Chapter 3 Use Synthetic Division to divide the first polynomial by the second. 1. 2. 3. 4. Use Synthetic Division and the Remainder Theorem to find . 5. 6. Synthetic Division: Synthetic Division: Remainder Theorem: Remainder Theorem: Use Synthetic Division and the Factor Theorem to determine whether the given binomial is a factor of 7. . 8. Use Synthetic Division to show that is a zero of . 9. 10. Examine the leading term and the degree of the polynomial to determine the far-left and far-right behavior (end behavior) of the graph of the polynomial function. 11. 12. 13. 14. Use the graph below to identify the relative maximum and/or relative minimum values of . 15. 16. Relative Maximum:_________________________ Relative Maximum:_________________________ Relative Minimum:_________________________ Relative Minimum:_________________________ Find the real zeros of the polynomial function by factoring. Identify the multiplicity of each zero. 17. 18. Find the real zeros of the polynomial function by factoring. Identify the multiplicity of each zero. 19. 20. Use the Intermediate Value Theorem to verify that has a zero between . 21. 22. Determine the x-intercepts of the graph of Theorem to determine whether the graph of . For each x-intercept, use the Even and Odd Powers of crosses the x-axis (passes through) or intersects but does not cross the x-axis (hits and bounces). 23. 24. Sketch the graph of #23 and #24. Do not use a graphing calculator. 25. 26. Use the Rational Zero Theorem to list the possible rational zeros for each polynomial function. Then find ALL the zeros (real and/or imaginary). Don’t forget to check for multiplicities! 27. 28. 29. 30. Find a polynomial function of lowest degree with integer coefficients that has the given zeros. 31. 32. 33. 34. Chapter 4 Use composition of functions to determine whether and 1. 2. 3. 4. are inverses of each other. Find the inverse of the function. If the function does not have an inverse function, write “no inverse function.” 5. Find 7. 6. . State any restrictions on the domain of . 8. 9. 10.