Download ALGEBRA II WITH TRIGONOMETRY

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
ALGEBRA II WITH TRIGONOMETRY
MIDTERM EXAM REVIEW – PART I
ANSWER KEY
CHAPTER 1 PROBLEM SET
1)
a)
b)
x6z3
c)
x6
4y
d)
2)
3)
4)
5)
3xy3
Multiplicative Identity
Multiplicative Inverse
Commutative Property of Addition
Distributive Property
Associative Property of Multiplication
Additive Identity
a)
2
b)
b)
7)
a)
x=3
y=2
b)
x=
a)
c)
e)
g)
i)
6 – 2i
-4 – i
26 – 7i
15 – 8i
-i
k)

d)

a)
3 7
b)
5i 6
c)
16i
d)
e)
53 3  10 6
f)
30 14
g)
637
h)
6 6
i)
7 6 3
2
m)
9)
2
34
9
4
30  5 2
34
10)
3 + 5i
y=2
3
b)
d)
f)
h)
j)
5i
6
35  10i
53
a)
c)
no soution
x = 94
e)
t 
g)
L
i)
r = 2,
k)
A P
Pr
S
1 r
6
-6 + i
-16 + 8i
169
-i
-72i
13i
l)
6
14  23i
n)
29
b)
d)
x=1
x=2
f)
h 
h)
x
V
r2
b
2  4a
11
j)
x = -5,
x=4
l)
m=
a)
c)
x<3
5 < x  12
b)
d)
x  -3
-9  x  6
e)
-1 < x < 2
f)
-2  x 
g)
x>
5
5
12
k)
69
2 – 7i
3
c)
10
3
a)
1
16z 4 y12
a)
b)
c)
d)
e)
f)
30 
6)
8)
a) Rat. Real, Complex
b) Rat. Real, Complex
c) Rat. Real, Complex
d) Imag, Complex
e) Int, Rat, Real, Complex
f) Pure Imag, Imag, Complex
g)Whole, Int, Rat, Real, Complex
h) Irr, Real, Complex
j)
l)
h)
14
or x < 
4
3
3
x < -5 or x > 2
3
21
11
2
3
CHAPTER 2 PROBLEM SET
1)
a)
b)
c)
d)
D: {x  -5, -2, 0, 4, 7}
R: {y  -9, -3, 1, 9, 15}
Yes because there is exactly one x
mapped to each y
y = 2x + 1
y
x
e)
-5
-2
0
4
7
-9
-3
1
9
15
2)
y = -6
4)
a)
b)
c)
d)
f(-6) = -27
g(2) = -26
f(2a) = 8a – 3
f(g(-4)) = -443
a)
(
5)
6)
7)
3)
2
$1023.16 per year
, 0) and (0, 
1
b)
2
3
(6, 0) and (0, 4)
a)
2x + 3y = 12
b)
y=
c)
d)
e)
x+1
3
2x – y – 5 = 0
y = -7
x = -2
f)
y= 
a) f(5) = -3
2
x+
5
9)
a)
y = 12x + 55
a)
k=
b)
k = 63; y =
c)
w=
5
2
; y=
1
5
2
x
63
x
xy
3
w = 68
d)
y=
800
x2
y = 32
2)
a)
b)
coincide (many sol’n)
parallel (no soln)
3)
a)
(2, 3)
4)
a)
y-int: 4 slope: ½
shade below the solid line
y-int: 2 slope: -½
shade above the dotted line
y-int: -1 slope: 3
shade below dotted line
y-int: 3 slope: -1
shade above the solid line
b)
b)
5)
2.80x + 5.30y = 330
x + y = 100
80 peanuts, 20 cashews
6)
a)
 2

11
c)
not possible d)
2
b) f(-4) = 3
7c and 8)
See graphs on next page
a) y-int 2, slope -2/3
b) y-int 2, slope 5/2
c) y-int 2, slope -5/3,
shade below dotted line
d) y-int -4, slope 3,
shade below solid line
e) vertex (3, 5), opens up slopes 1 and -1
f) vertex (-3, 0), opens up slopes 2 and -2
88%
3.75 hours
CHAPTER 3 PROBLEM SET
1)
a)
(4, 2)
b)
no solution
)
1
3
10)
b)
c)
7)
8)
2

9 
b)
7) e) vertex (3, 5), opens up
x =slopes
1/3, y1=and
-4, -1
z=3
C(0, 0) = 0 (min)
C(0, 5) = 30 (max)
C(2, 4) = 30 (max)
C(6, 0) = 18
(6, -2)
 8 13


12 
2


4
6 
 4 
3


2
8
2

 

3
3
3
Chapter 2 Graphs
y
Problem 7c)
x
Problem 8:
a)
2x + 3y = 6
b)
QuickTime™ and a
decompressor
are needed to see this picture.
c)
5x + 3y < 6
QuickTime™ and a
decompressor
are needed to see this picture.
d)
QuickTime™ and a
decompressor
are needed to see this picture.
e)
f(x) = |x – 3| + 5
QuickTime™ and a
decompressor
are needed to see this picture.
5x - 2y = -4
6x – 2y  8
QuickTime™ and a
decompressor
are needed to see this picture.
f)
f(x) = |2x + 6|
QuickTime™ and a
decompressor
are needed to see this picture.
CHAPTER 4 PROBLEM SET
1)
2)
3)
b)
a)
b)
c)
d)
e)
f)
g)
h)
i)
j)
(x – 1) (x – 6)
(3x – 8) (3x + 8)
3x2 (x - 8) (x + 2)
3x (x – 1) (x – 7)
(2x + 3) (4x2 – 6x + 9)
(2x + 3)2
(x + 9) (x – 9)
(4x – 3) (16x2 + 12x + 9)
(5x2 + 2) (3x + 2)
(k + 3) (k – 3) (k + 4)
a)
x = 2 2
b)
x = 5
c)
x = 5  29
d)
x= 
e)
x=
f)
x=
a)
Vertex: (2, -1)
Axis of Symmetry: x = 2
Y-Intercept: (0, 3)
X-Intercepts: (1, 0) and (3, 0)
5  i 3
2
Vertex: (
1
4
, 
49
8
Axis of Symmetry: x =
Y-Intercept: (0, -6)
X-Intercepts: ( 
1
2
3
2
, 0) and (2, 0)
4)
a)
,2
1i 5
2
Discriminant: -31
2 imaginary roots
x=
c)
QuickTime™ and a
decompressor
are needed to see this picture.
1  i 31
16
Discriminant: 48
2 real roots
Discriminant: -92
2 imaginary roots
x=
d)
5  i 23
12
Discriminant: 0
1 real root
x=
QuickTime™ and a
decompressor
are needed to see this picture.
4
Vertex: (1, 4)
Axis of symmetry: x = 1
y-intercept: (0, 3)
x-intercepts: (3, 0) and (-1, 0)
d)
Vertex: (-3, -5)
Axis of symmetry: x = -3
y-intercept: (0, 13)

5 2 
x-intercepts:  3 
, 0


2
x = 3  2 3
QuickTime™ and a
decompressor
are needed to see this picture.
1
c)
b)
QuickTime™ and a
decompressor
are needed to see this picture.
)
5
3
Related documents