Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Jointly distributed Random
variables
Multivariate distributions
Discrete Random Variables
The joint probability function;
p(x,y) = P[X = x, Y = y]
1.
0 p x, y 1
2.
p x, y 1
x
3.
y
P X , Y A p x, y
x, y A
Continuous Random Variables
Definition: Two random variable are said to have
joint probability density function f(x,y) if
1.
0 f x, y
2.
f x, y dxdy 1
3.
P X , Y A f x, y dxdy
A
If 0 f x, y then z f x, y
defines a surface over the x – y plane
f x, y dxdy
A
Multiple Integration
f x, y dxdy
A
f(x,y)
If the region A = {(x,y)| a ≤ x ≤ b, c ≤ y ≤ d} is a
rectangular region with sides parallel to the
coordinate axes:
y
d
c
a
Then
x
b
f x, y dxdy
A
f x, y dx dy f x, y dy dx
d
b
b
d
c
a
a
c
To evaluate
d b
f x, y dxdy f x, y dxdy
c a
d b
A
f x, y dx dy
c a
First evaluate the inner integral
b
G y f x, y dx
a
Then evaluate the outer integral
d b
d
c a
c
f x, y dxdy G y dy
y
d
dy
y
c
b
a
b
x
G y f x, y dx = area under surface above the
line where y is constant
a
d b
d
c a
c
f x, y dxdy G y dy
Infinitesimal volume under
surface above the line where
y is constant
The same quantity can be calculated by integrating
first with respect to y, than x.
b d
f x, y dxdy f x, y dydx
a c
b d
A
f x, y dy dx
a c
First evaluate the inner integral
d
H x f x, y dy
c
Then evaluate the outer integral
b d
b
a c
a
f x, y dydx H x dx
y
dx
d
c
d
a
x
b
x
H x f x, y dy = area under surface above the
line where x is constant
c
b d
b
a c
a
f x, y dydx H x dx
Infinitesimal volume under
surface above the line where
x is constant
Example: Compute
1 1
1 1
0 0
Now
1 1
0 0
x 2 y xy 3 dxdy x 2 y xy 3 dydx
0 0
1
2
3
2
3
x y xy dxdy x y xy dx dy
0 0
x
1
1 3
2
x
x 3
dy
y y
3
2
0
x 0
1
2
4 y 1
1 3
1y 1y
1
y y dy
3
2
3 2 2 4 y 0
0
1 1 7
6 8 24
1
The same quantity can be computed by reversing
the order of integration
1 1
0 0
1
2
3
2
3
x y xy dydx x y xy dy dx
0 0
1
y 1
4
y2
y
2
x x dx
2
4 y 0
0
1
2 x 1
1x 1x
1 2 1
x x dx
2
4
2 3 4 2
0
1 1 7
6 8 24
1
3
x 0
Integration over non rectangular
regions
Suppose the region A is defined as follows
A = {(x,y)| a(y) ≤ x ≤ b(y), c ≤ y ≤ d}
y
d
c
Then
A
b(y)
a(y)
x
b y
f x, y dxdy f x, y dx dy
c
a y
d
If the region A is defined as follows
A = {(x,y)| a ≤ x ≤ b, c(x) ≤ y ≤ d(x) }
y
d(x)
c(x)
Then
A
b
a
x
d x
f x, y dxdy f x, y dy dx
a
c x
b
In general the region A can be partitioned into
regions of either type
y
A2
A1
A3
A
A4
x
Example:
Compute the volume under f(x,y) = x2y + xy3 over the
region A = {(x,y)| x + y ≤ 1, 0 ≤ x, 0 ≤ y}
y
(0, 1)
x+y=1
(1, 0)
x
Integrating first with respect to x than y
y
(0, 1)
x+y=1
(1 - y, y)
(0, y)
(1, 0)
x
x
A
2
1 1 y
y xy dxdy
3
x
0 0
1 1 y
2
y xy dxdy
3
2
3
x y xy dx dy
0
0
and
x 1 y
3
2
x
x
2
3
3
x
y
xy
dx
dy
3 y 2 y dy
0 0
0
x 0
3
2
1
1 y
1 y 3
y
y dy
3
2
0
1
y 3 y 2 3 y3 y 4 y3 2 y 4 y5
dy
3
2
0
1
1 y
1
1 43 15 14 52 16
3
2
16 13 14 151 81 15 121
1
2
20 4030815 2410
120
3
120
1
40
Now integrating first with respect to y than x
y
(0, 1)
x+y=1
(x, 1 – x )
(1, 0)
(x, 0)
A
x
1 1 x
x 2 y xy 3 dydx
0 0
1 1 x
x 2 y xy 3 dydx
2
3
x y xy dy dx
0 0
Hence
0 0
1
1 x
y 1 x
2
4
y
y
2
2
3
x
x y xy dy dx 0 2 x 4 dx
y 0
1
1
x
0
2
1 x
2
2
1 x
x
4
4
dx
x 2 2 x3 x 4 x 4 x 2 6 x3 4 x 4 x5
dx
2
4
0
1
x 2 x 2 2 x3 2 x 4 x5
dx
4
0
1
1512 6
4
18 16 18 101 201 1520120
120
Continuous Random Variables
Definition: Two random variable are said to have
joint probability density function f(x,y) if
1.
0 f x, y
2.
f x, y dxdy 1
3.
P X , Y A f x, y dxdy
A
Definition: Let X and Y denote two random
variables with joint probability density function
f(x,y) then
the marginal density of X is
fX x
f x, y dy
the marginal density of Y is
fY y
f x, y dx
Definition: Let X and Y denote two random
variables with joint probability density function
f(x,y) and marginal densities fX(x), fY(y) then
the conditional density of Y given X = x
fY X y x
f x, y
fX x
conditional density of X given Y = y
fX Y x y
f x, y
fY y
The bivariate Normal distribution
Let
f x1 , x2
1
2 1 2
1
2
e
1
Q x1 , x2
2
where
2
x 2
x
x
x
1
1
1
1
2
2
2
2
2
1 2 2
1
Q x1 , x2
1 2
This distribution is called the bivariate
Normal distribution.
The parameters are 1, 2 , 1, 2 and .
Surface Plots of the bivariate
Normal distribution
Note:
f x1 , x2
1
2 1 2
1
2
e
1
Q x1 , x2
2
is constant when
2
x 2
x
x
x
1
1
1
1
2
2
2
2
2
1 2 2
1
Q x1 , x2
1 2
is constant.
This is true when x1, x2 lie on an ellipse
centered at 1, 2 .
Marginal and Conditional
distributions
Marginal distributions for the Bivariate Normal
distribution
Recall the definition of marginal distributions
for continuous random variables:
f1 x1
f x1 , x2 dx2
and
f 2 x2
f x , x dx
1
2
It can be shown that in the case of the bivariate
normal distribution the marginal distribution of xi
is Normal with mean i and standard deviation i.
1
Proof:
The marginal distributions of x2 is
f 2 x2
f x , x dx
1
2
1
1
2 1 2
1 2
e
1
Q x1 , x2
2
dx1
where
2
x1 1 x2 2
x1 1
2
1
1 2
Q x1 , x2
1 2
x2 2
2
2
Now:
2
x 2
x
x
x
1
1
1
1
2
2
2
2
2
1 2 2
1
Q x1 , x2
1 2
2
2
x
a
x
a
a
1
1
c
2 2 x1 2 c
2
b
b
b
b
2
x12
1
x2 2
2
2
2
1
2 1 1 2
1
2
1
1
2
1
2
2
x2 2
2 1 1
2
1
x2 2
x1
2
22 1 2
Hence
Also
b2 1 2
or b 1 1 2
1
x2 2
a
2
2
b
1
2 1 1 2
1
1
x2
2 1
2
1
and
1
a 1
x2
2
Finally
x2 2
x2 2
a
c 2
2
1 2
2
2
2
b
1 1
2 1 1
2 1 2
2
c
2
1
1
2
1
2
2
1
1
2
1
2
2
1
2
2
2
x2 2
2 1 1
2
x2 2
2 1 1
2
1
1 x2
2
1 2
2
x2 2
2
x2 2
2
1
1
22 1 2
22 1 2
a2
2
b
and
2
1
12
1
2
c 2
2 1 x2 2 2 x2 2
2 1
2
2
1 1
2
1
1 x2 2
2
12
1
2
2
2
1 x2 2
2 2
1 1 2
x2 2
2
2
Summarizing
2
x 2
x
x
x
1
1
1
1
2
2
2
2
2
1 2 2
1
Q x1 , x2
1 2
x1 a
c
b
2
where
and
b 1 1 2
1
a 1
x2
2
2
x2 2
c
2
Thus
f 2 x2
f x , x dx
1
2
1
1
2 1 2
1
e
2
1
2 be
2 1 2
1
2 2
e
1 2
e
1 2
2
2
1 x1 a
c
2 b
dx1
c 2
1 x
2 2
2 2
dx1
2 1 2
1
Q x1 , x2
2
1
e
2 b
1 x a
1
2 b
2
dx1
Thus the marginal distribution of x2 is Normal
with mean 2 and standard deviation 2.
Similarly the marginal distribution of x1 is Normal
with mean 1 and standard deviation 1.
Conditional distributions for the Bivariate Normal
distribution
Recall the definition of conditional distributions
for continuous random variables:
f1 2 x1 x2
f x1 , x2
f 2 x2
and f 21 x2 x1
f x1 , x2
f1 x1
It can be shown that in the case of the bivariate
normal distribution the conditional distribution of
xi given xj is Normal with:
i
mean i j i x j j and
j
standard deviation
i j i 1 2
Proof
f 21 x2 x1
f x1 , x2
f1 x1
e
1
Q x1 , x2
2
2 1 2
1 2
1
2 2
e
1
1 x
Q x1 , x2 2 2
2
2 2
2 1 1
2
2
e
e
1 x
2 2
2 2
2
2
1 x 2
1 x1 a
c 2 2
2 b
2 2
2 1 1 2
where
and
Hence
b 1 1 2
1
a 1
x2
2
2
x2 2
c
2
1
f1 2 x1 x2
e
2 b
1 x a
1
2 b
2
Thus the conditional distribution of x2 given x1 is Normal
with:
1
x2 2 and
mean a 1 2 1
2
standard deviation
b 1 2 1 1 2
Bivariate Normal Distribution with marginal
distributions
Bivariate Normal Distribution with
conditional distribution
x2
( 1, 2)
Major axis of
ellipses
Regression
Regression to the
mean
2
21 2 x1 2
1
x1