Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
TRIGONOMETRY REVIEW Circles Angles measured using degrees, radians, or revolutions One full revolution around a circle is equal to 360 and 2 radians Degree or radian measurements are equivalent over full revolutions o E.g. 90 is equivalent to 450, 90 plus 360k where k is an integer Arc length o Arc length for whole circle (or circumference) is 2r o Arc length is equal to r o Example: Arc Length of circle of radius 2 at =/2 o arc length = /2 (2) = Area of a sector: o area of whole circle is r2 o the area of a sector with angle is r2 2 Trigonometric Identities sin 2 cos 2 1 csc 2 cot 2 1 tan 2 1 sec 2 cosA B cos A cos B sin A sin B sin( A B) sin A cosB cosAsin B tan A tan B tan( A B) 1 tan A tan B cos(90 A) sin A cos(2A) 2cos 2 A 1 sin( 2A) 2sin A cos A 2tan A tan( 2A) 1 tan 2 A x cos x 1 cos 2 2 x 1 cos x sin 2 2 sin tan cos The phrase SOH – CAH – TOA is a very useful when finding sin , cos , tan when given the lengths of sides of a triangle. Sin=Opposite/Hypotenuse Cos=Adjacent/Hypotenuse Tan=Opposite/Adjacent 1 sin 1 sec cos 1 cos cot tan sin csc Proofs sin(A+B) sin( A B) RS QP OR OR RS QP OQ sin A cos B OR OR OR RS sin A cos B OR RS RQ sin A cos B RQ OR cos A sin B sin A cos B cos(A+B) RT RS ST RS ST OR OR OR OR (1 cos(A B)) 2 sin 2 (A B) (cos A cos B) 2 (sin B sin A) 2 1 2 cos(A B) cos 2 (A B) sin 2 (A B) cos 2 A 2cos 2 A cos B cos 2 B sin 2 A 2sin Asin B sin 2 B Sorry Arup I was having trouble understanding what to type for the proof. tan(A+B) sin( A B) sin A cos B cos A sin B cos(A B) cos A cos B sin A sin B 1 sin A cos B cos B sin B cos A cos B 1 cos A cos B sin A sin B cos A cos B sin A cos B cos A sin B cos A cos B cos A cos B sin A sin B cos A cos B cos A cos B tan A tan B 1 tan A tan B sin2 sin 2 sin( ) tan( A B) sin cos cos sin 2sin cos cos2 cos 2 cos( ) cos cos sin sin cos 2 sin 2 cos 2 (1 cos 2 ) 2 cos 2 1 tan2 tan 2 tan( ) tan tan 1 tan tan 2 tan 1 tan 2 Finding Ratios with out finding the angle. When given a ratio, for example sin 2 it is possible to find other ratios such as 5 cos , tan , sin2 , cos2 , etc. To find the other trig functions with a single , just use the Pythagorean theorem. 2 Using the example sin : 5 52-22=x2 or 25-4=21=x2 2 21 So cos = , tan = , etc. 5 21 To find trig functions with more than 1 , manipulate the trigonometric identities. 2 o E.g. give that sin to sin2 use sin2 =2sin cos 5 2 21 4 21 2sin cos = 2 5 5 25 The Nature of trigonometric graphs Sinx o Hasperiod of 2 o Is always continuous Cosx o Has period of 2 o Is always continuous o Similar to graph of sinx but offset by /2 to the left Tanx o Has period of o Is undefined where x=/2 + k K is an integer Composite Function f(x) = a sin(b(x+c)) + d a changes the amplitude of the graph. b changes the period of the graph, condensing or expanding it c moves the graph left or right d moves the graph up or down. Inverse Functions arcsin x: has a range of (- , ) has a domain of [-1,1] arccos x: has a range of (- , ) has a domain of [-1,1] , ] 2 2 has a domain of (- , ) Rules and Formulas for Triangles 1 A = bh 2 arctan x: has a range of [- Hero’s Formula: A = s(s a)(s b)(s c) where s = abc 2 Cosine Rule: c 2 a 2 b 2 2ab cos c a b c The Sine Rule: sin A sin B sin C 1 Alternate Area: A = absinC 2 Half Angle Identities: 2 tan A We know that tan 2 A . From this it can be determined that 1 tan 2 A 2 tan A 1 tan 2 A sin 2 A and . cos 2 A 1 tan 2 A 1 tan 2 A If we replace 2A by and use t to denote tan we have: 2 2t o tan 1 t2 2t o sin 1 t2 1 t2 o cos 1 t2 More Identities 1 (1 cos 2 ) 2 1 cos 2 (1 cos 2 ) 2 PQ P Q sin P sin Q 2sin cos 2 2 PQ P Q sin P sin Q 2 cos sin 2 2 PQ P Q cos P cos Q 2 cos cos 2 2 PQ P Q cos P cos Q 2sin sin 2 2 2sin A cos B sin( A B) sin( A B) 2 cos A sin B sin( A B) sin( A B) 2 cos A cos B cos( A B) cos( A B) 2sin A sin B cos( A B) cos( A B) sin 2 Practice Problems 1) A chord AB divides a circle of radius 2m into two segments. If AB subtends an angle of 60 at the center of the circle, find the area of the minor segment. 2) Find the sine, cosine, and tangent of 243 . 3) Find the general solution of tan 7 tan 2 . 4) Solve sec2 tan 2 6 for angles in the range 180 180 . 5) Without using tables or a calculator, evaluate: (a) sin 75 (b) cos105 (c) tan(15 ) 6) Prove that: 1 cos 2 A tan A sin 2 A 1 sin 2 7) Express in terms of tan . 1 sin 2 Solutions 1. 60 3 1 2 1 2 2 r (22 ) m 2.094m 2 2 2 3 3 1 sin 2 1 tan Area of AOB = 1 sin 2 1 tan Area of sector AOB = Area of Minor Segment (shaded in) = (2.094 – 1.732) m 2 = .362 m 2 2. 180 63 sin 243 sin 63 .8910 cos 243 cos 63 .4540 tan 243 tan 63 1.9626 3. tan 7 tan 2 because the tangent function has a period of , 7 n 2 5 n n 5 4. sec 2 tan 2 6 sec 2 1 tan 2 1 tan 2 tan 2 6 2 tan 2 5 tan 2 5 2 5 2 1.007, 4.149 radians tan 57.689 , 237.689 radians 5. sin 75 sin(45 30 ) sin 45 cos 30 cos 45 sin 30 2 3 2 1 )( ) ( )( ) 2 2 2 2 2 ( 3 1)( ) 4 (a) ( cos105 cos(60 45 ) cos 60 cos 45 sin 60 sin 45 1 2 3 2 (b) ( )( ) ( )( ) 2 2 2 2 (1 3) 2 4 tan(15 ) tan(45 60 ) (c) tan 45 tan 60 1 tan 45 tan 60 1 3 32 1 3 6. 1 cos 2 A 1 (cos 2 A sin 2 A) sin 2 A 2sin A cos A 2 1 cos A sin 2 A 2sin A cos A sin 2 A sin 2 A 2sin 2 A 2sin A cos A 2sin A cos A sin A tan A cos A 2t 7. Using sin 2 where t tan gives 1 t2 2t 1 t 2 2t (1 t ) 2 1 sin 2 1 1 t2 1 t2 1 t2 2t 1 t 2 2t (1 t ) 2 1 sin 2 1 and 1 t2 1 t2 1 t2 (1 t ) 2 2 1 sin 2 1 t 2 Hence 1 t 2 ( ) 1 sin 2 (1 t ) 1 t 1 t2 1 sin 2 1 tan 1 sin 2 1 tan