Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Lecture 7: Evolution I I. Population Genetics A. Overview Agents of Change Mutation N.S. Recombination - crossing over - independent assortment VARIATION Sources of Variation mutation Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population G. Hardy and W. Weinberg 1. Definitions - Evolution: a change in the genetic structure of a population - Population: a group of interbreeding organisms that share a common gene pool; spatiotemporally and genetically defined - Gene Pool: sum total of alleles held by individuals in a population - Genetic structure: Gene array and Genotypic array - Gene/Allele Frequency: % of alleles at a locus of a particular type - Gene Array: % of all alleles at a locus: must sum to 1. - Genotypic Frequency: % of individuals with a particular genotype - Genotypic Array: % of all genotypes for loci considered; must = 1. Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population 1. Definitions 2. Basic Computations Individuals AA Aa aa 70 80 50 (200) Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population 1. Definitions 2. Basic Computations AA Aa aa Individuals 70 80 50 (200) Genotypic Array 70/200 = 0.35 80/200 = .40 50/200 = 0.25 =1 Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population 1. Definitions 2. Basic Computations AA Aa aa Individuals 70 80 50 (200) Genotypic Array 70/200 = 0.35 80/200 = .40 50/200 = 0.25 =1 ''A' alleles 140 80 0 220/400 = 0.55 Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population 1. Definitions 2. Basic Computations AA Aa aa Individuals 70 80 50 (200) Genotypic Array 70/200 = 0.35 80/200 = .40 50/200 = 0.25 =1 ''A' alleles 140 80 0 220/400 = 0.55 'a' alleles 0 80 100 180/400 = 0.45 Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population 1. Definitions 2. Basic Computations - Determining the Gene Array from the Genotypic Array a. f(A) = f(AA) + f(Aa)/2 = .35 + .4/2 = .35 + .2 = .55 b. f(a) = f(aa) + f(Aa)/2 = .25 + .4/2 = .25 + .2 = .45 KEY: The Gene Array CAN ALWAYS be computed from the genotypic array; the process just counts alleles instead of genotypes. No assumptions are made when you do this. Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population C. The Hardy-Weinberg Equilibrium Model 1. Goal: Describe what the genetic structure of the population would be if there were NO evolutionary change – if the population was in equilibrium. Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population C. The Hardy-Weinberg Equilibrium Model 1. Goal: Describe what the genetic structure of the population would be if there were NO evolutionary change – if the population was in equilibrium. For a population’s genetic structure to remain static, the following must be true: - random mating - no selection - no mutation - no migration - the population must be infinitely large Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population C. The Hardy-Weinberg Equilibrium Model 2.Example: Initial genotypic freq. Gene freq. Genotypes, F1 Gene Freq's Genotypes, F2 AA Aa aa 0.4 0.4 0.2 1.0 Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population C. The Hardy-Weinberg Equilibrium Model 2.Example: Initial genotypic freq. Gene freq. Genotypes, F1 Gene Freq's Genotypes, F2 AA Aa aa 0.4 0.4 0.2 f(A) = p = .4 + .4/2 = 0.6 1.0 f(a) = q = .2 + .4/2 = 0.4 Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population C. The Hardy-Weinberg Equilibrium Model 2.Example: Initial genotypic freq. Gene freq. Genotypes, F1 Gene Freq's Genotypes, F2 AA Aa aa 0.4 0.4 0.2 f(A) = p = .4 + .4/2 = 0.6 p2 = .36 2pq = .48 1.0 f(a) = q = .2 + .4/2 = 0.4 q2 = .16 = 1.00 Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population C. The Hardy-Weinberg Equilibrium Model 2.Example: Initial genotypic freq. Gene freq. Genotypes, F1 Gene Freq's Genotypes, F2 AA Aa aa 0.4 0.4 0.2 f(A) = p = .4 + .4/2 = 0.6 p2 = .36 2pq = .48 1.0 f(a) = q = .2 + .4/2 = 0.4 q2 = .16 = 1.00 f(A) = p = .36 + .48/2 = 0.6 f(a) = q = .16 + .48/2 = 0.4 p2 = .36 q2 = .16 2pq = .48 = 1.00 After one generation with these conditions, the population equilibrates Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population C. The Hardy-Weinberg Equilibrium Model 2.Example 3. Utility: If no populations meets these conditions explicitly, how can it be useful? Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population C. The Hardy-Weinberg Equilibrium Model 2.Example 3. Utility: If no populations meets these conditions explicitly, how can it be useful? For comparison, like a “perfectly balanced coin” Initial genotypic freq. Gene freq. HWE expections AA Aa aa 0.5 0.2 0.3 f(A) = p = .5 + .2/2 = 0.6 p2 = .36 2pq = .48 1.0 f(a) = q = .3 + .2/2 = 0.4 q2 = .16 CONCLUSION:The real population is NOT in HWE. = 1.00 Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population C. The Hardy-Weinberg Equilibrium Model 3. Utility: - if a population is NOT in HWE, then one of the assumptions must be violated. Sources of Variation Recombination - crossing over VARIATION Mutation Agents of Change - independent assortment So, if NO AGENTS are acting on a population, then it will be in equilibrium and WON'T change. N.S. Drift Migration Mutation Non-random Mating Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population C. The Hardy-Weinberg Equilibrium Model 3. Utility: - if a population is NOT in HWE, then one of the assumptions must be violated. -Also, If HWCE is assumed and the frequency of homozygous recessives can be measured, then the number of heterozygous carriers can be estimated. For example: If f(aa) = .01, then estimate f(a) = .1 and f(A) must be .9. f(Aa) = 2(.1)(.9) = 0.18. Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population C. The Hardy-Weinberg Equilibrium Model 3. Utility: - if a population is NOT in HWE, then one of the assumptions must be violated. Sources of Variation Recombination - crossing over VARIATION Mutation Agents of Change - independent assortment So, if NO AGENTS are acting on a population, then it will be in equilibrium and WON'T change. N.S. Drift Migration Mutation Non-random Mating Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population C. The Hardy-Weinberg Equilibrium Model D. Deviations from HWE 1. mutation 1. Consider a population with: f(A) = p = 0.6 f(a) = q = 0.4 2. Suppose 'a' mutates to 'A' at a realistic rate of: μ = 1 x 10-5 3. Well, what fraction of alleles will change? 'a' will decline by: qm = .4 x 0.00001 = 0.000004 'A' will increase by the same amount. f(A) = p1 = 0.600004 f(a1) = q = 0.399996 Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population C. The Hardy-Weinberg Equilibrium Model D. Deviations from HWE 1. mutation 2. migration p2 = 0.7 p1 = 0.2 q2 = 0.3 q1 = 0.8 suppose migrants immigrate at a rate such that the new immigrants represent 10% of the new population Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population C. The Hardy-Weinberg Equilibrium Model D. Deviations from HWE 1. mutation 2. migration p2 = 0.7 p1 = 0.2 q2 = 0.3 q1 = 0.8 M = 10% p(new) = p1(1-m) + p2(m) = 0.2(0.9) + 0.7(0.1) = 0.18 + 0.07 = 0.25 D. Deviations from HWE 1. mutation 2. migration 3. Non-random Mating a. Positive Assortative Mating – “Like mates with Like” offspring F1 AA Aa aa 0.2 0.6 0.2 D. Deviations from HWE 1. mutation 2. migration 3. Non-random Mating a. Positive Assortative Mating – “Like mates with Like” offspring F1 AA Aa aa 0.2 0.6 0.2 ALL AA 1/4AA:1/2Aa:1/4aa ALL aa D. Deviations from HWE 1. mutation 2. migration 3. Non-random Mating a. Positive Assortative Mating – “Like mates with Like” offspring F1 AA Aa aa 0.2 0.6 0.2 ALL AA 1/4AA:1/2Aa:1/4aa ALL aa 0.2 0.15 + 0.3 + 0.15 0.2 0.35 0.3 0.35 D. Deviations from HWE 1. mutation 2. migration 3. Non-random Mating a. Positive Assortative Mating – “Like mates with Like” b. Inbreeding: Mating with Relatives Decreases heterozygosity across the genome, at a rate dependent on the degree of relatedness among mates. D. Deviations from HWE 1. mutation 2. migration 3. Non-random Mating 4. Finite Population Sizes: Genetic Drift The organisms that actually reproduce in a population may not be representative of the genetics structure of the population; they may vary just due to sampling error D. Deviations from HWE 1. mutation 2. migration 3. Non-random Mating 4. Finite Population Sizes: Genetic Drift 1 - small pops will differ more, just by chance, from the original population D. Deviations from HWE 1. mutation 2. migration 3. Non-random Mating 4. Finite Population Sizes: Genetic Drift 1 - small pops will differ more, just by chance, from the original population 2 - small pops will vary more from one another than large D. Deviations from HWE 1. mutation 2. migration 3. Non-random Mating 4. Finite Population Sizes: Genetic Drift - “Founder Effect” The Amish, a very small, close-knit group decended from an initial population of founders, has a high incidence of genetic abnormalities such as polydactyly - “Founder Effect” and Huntington’s Chorea HC is a neurodegenerative disorder caused by an autosomal lethal dominant allele. The fishing villages around Lake Maracaibo in Venezuela have the highest incidence of Huntington’s Chorea in the world, approaching 50% in some communities. - “Founder Effect” and Huntington’s Chorea HC is a neurodegenerative disorder caused by an autosomal lethal dominant allele. The fishing villages around Lake Maracaibo in Venezuela have the highest incidence of Huntington’s Chorea in the world, approaching 50% in some communities. The gene was mapped to chromosome 4, and the HC allele was caused by a repeated sequence of over 35 “CAG’s”. Dr. Nancy Wexler found homozygotes in Maracaibo and described it as the first truly dominant human disease (most are incompletely dominant and cause death in the homozygous condition). - “Founder Effect” and Huntington’s Chorea HC is a neurodegenerative disorder caused by an autosomal lethal dominant allele. The fishing villages around Lake Maracaibo in Venezuela have the highest incidence of Huntington’s Chorea in the world, approaching 50% in some communities. By comparing pedigrees, she traced the incidence to a single woman who lived 200 years ago. When the population was small, she had 10 children who survived and reproduced. Folks with HC now trace their ancestry to this lineage. - “Genetic Bottleneck” If a population crashes (perhaps as the result of a plague) there will be both selection and drift. There will be selection for those resistant to the disease (and correlated selection for genes close to the genes conferring resistance), but there will also be drift at other loci simply by reducing the size of the breeding population. European Bison, hunted to 12 individuals, now number over 1000. Cheetah have very low genetic diversity, suggesting a severe bottleneck in the past. They can even exchange skin grafts without rejection… Elephant seals fell to 100’s in the 1800s, now in the 100,000’s Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population C. The Hardy-Weinberg Equilibrium Model D. Deviations From HWE: 1. Mutation 2. Migration 3. Non-Random Mating: 4. Populations of Finite Size and Sampling Error - "Genetic Drift" 5. Natural Selection 1. Fitness Components: D. Deviations From HWE: 5. Natural Selection 1. Fitness Components: Fitness = The mean number of reproducing offspring / genotype - probability of surviving to reproductive age - number of offspring - probability that offspring survive to reproductive age D. Deviations From HWE: 5. Natural Selection 1. Fitness Components: Fitness = The mean number of reproducing offspring / genotype - probability of surviving to reproductive age - number of offspring - probability that offspring survive to reproductive age 2. Constraints: i. finite energy budgets and necessary trade-offs: D. Deviations From HWE: 5. Natural Selection 1. Fitness Components: Fitness = The mean number of reproducing offspring / genotype - probability of surviving to reproductive age - number of offspring - probability that offspring survive to reproductive age 2. Constraints: i. finite energy budgets and necessary trade-offs: GROWTH METABOLISM REPRODUCTION D. Deviations From HWE: 5. Natural Selection 1. Fitness Components: 2. Constraints: i. finite energy budgets and necessary trade-offs: TRADE OFF #1: Survival vs. Reproduction Maximize probability of survival Maximize reproduction GROWTH GROWTH METABOLISM REPRODUCTION METABOLISM REPRODUCTION D. Deviations From HWE: 5. Natural Selection 1. Fitness Components: 2. Constraints: i. finite energy budgets and necessary trade-offs: TRADE OFF #1: Survival vs. Reproduction TRADE OFF #2: Lots of small offspring vs. few large offspring REPRODUCTION METABOLISM REPRODUCTION METABOLISM Lots of small, low prob of survival A few large, high prob of survival D. Deviations From HWE: 5. Natural Selection 1. Fitness Components: 2. Constraints: i. ii. finite energy budgets and necessary trade-offs: Contradictory selective pressures: Photosynthetic potential Water Retention Leaf Size D. Deviations From HWE: 5. Natural Selection 1. Fitness Components: 2. Constraints: i. ii. finite energy budgets and necessary trade-offs: Contradictory selective pressures: Rainforest understory – dark, wet Photosynthetic potential Water Retention Big leaves adaptive Leaf Size D. Deviations From HWE: 5. Natural Selection 1. Fitness Components: 2. Constraints: i. ii. finite energy budgets and necessary trade-offs: Contradictory selective pressures: Desert – sunny, dry Photosynthetic potential Small leaves adaptive Leaf Size Water Retention D. Deviations From HWE: 5. Natural Selection 1. Fitness Components: 2. Constraints: 3. Modeling Selection: a. Calculating relative fitness p = 0.4, q = 0.6 AA Aa aa Parental "zygotes" 0.16 0.48 0.36 prob. of survival (fitness) 0.8 0.4 0.2 Relative Fitness 0.8/0.8=1 0.4/0.8 = 0.5 0.2/0.8=0.25 = 1.00 D. Deviations From HWE: 5. Natural Selection 1. Fitness Components: 2. Constraints: 3. Modeling Selection: a. Calculating relative fitness b. Modeling Selection p = 0.4, q = 0.6 AA Aa aa Parental "zygotes" 0.16 0.48 0.36 prob. of survival (fitness) 0.8 0.4 0.2 Relative Fitness 1 0.5 0.25 Survival to Reproduction 0.16 0.24 0.09 = 0.49 Freq’s in Breeding Adults 0.16/0.49 = 0.33 0.24/0.49 = 0.49 0.09/0.49 = 0.18 = 1.00 Gene Frequencies F(A) = 0.575 Freq’s in F1 (p2, 2pq, q2) 0.33 0.49 = 1.00 F(a) = 0.425 0.18 = 1.00 D. Deviations From HWE: 5. Natural Selection 1. 2. 3. 4. Fitness Components: Constraints: Modeling Selection: Types of Selection D. Deviations From HWE: 5. Natural Selection 1. 2. 3. 4. Fitness Components: Constraints: Modeling Selection: Types of Selection Sexual Selection Some traits that decrease survival may be selected for because they have a direct and disproportional benefit on probability of mating. Intrasexual – competition within a sex for access to mates. Intersexual – mates are chosen by the opposite sex. Modern Evolutionary Biology I. Population Genetics A. Overview B. The Genetic Structure of a Population C. The Hardy-Weinberg Equilibrium Model D. Deviations From HWE E. Summary; The Modern Synthetic Theory of Evolution Agents of Change Mutation Natural Selection Recombination - crossing over - independent assortment VARIATION Sources of Variation Genetic Drift Migration Mutation Non-random Mating