Download Sophomore Olympiad

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Senior Olympiad
1. If x  0 , then
3 4
x equals:
A) x
B) 7 x
C) 12 x
D) 64 x
E) none of these
2. If x  0 , then
A)
B)
C)
D)
E)
 3x   2x
2 3
2
 6x 
2
equals:
 18x 7
 18x 6
 6x 9
6x 9
none of these
3. A factorization of 8 x 3  27 is:
A)
B)
C)
D)
E)
2 x  33
2 x  34 x2  12 x  9
2 x  34 x 2  6 x  9
2 x  34 x2  6 x  9
none of these
4. If the area of a circle is  square inches, then the length in inches of the radius of the
circle is:
A)
B)
C)
D)
E)

2


2
none of these
x
3
4
5
5. If      , then x equals:
5
4
3
2
2

3
2
3
3
2
none of these
A) 
B)
C)
D)
E)
6. An equation for the line that passes through the point 2, 3 and is parallel to the line
x  4 is:
A)
B)
C)
D)
E)
x2
x3
y2
y3
none of these
7. If 3, 2 is the midpoint of the line segment joining x, y  and 5, 1 , then y equals:
A)
B)
C)
D)
E)
1
3
4
5
none of these
1  2 x for x  1
8. If f ( x)   2
, then f (5) equals:
for x  1
 x
A)
B)
C)
D)
E)
 34
 17
9
25
none of these
9. The distance between the points  1, 4, 2 and 3, 1, 4 is:
A)
B)
C)
D)
E)
29
9
29
3
none of these
10. If f ( x)  3x  1  5 , then f ( x  1)  f ( x) equals:
A)  5
B) 3
C) 3x  1  3x  4  10
D) 3x  4  3x  1
E) none of these
11. If x  a  bi is a complex number such that x 3  11  2i and x 2  3  4i where
i   1 , then a  b equals:
A)  3
B)  1
C) 3
D) 4
E) none of these
12. If x  1 and log 3 x  1  log 3 2 x  1  2 , then x equals:
A)
B)
C)
D)
E)
2
5
1
2
5
2
none of these
13. The smallest x  0 for which y  sin (2 x) attains its minimum value is:
A)
B)
C)
D)
E)

4

2
3
4
3
2
none of these
14. If x and y are real numbers such that xy  0 , then the point x, y  must be in
quadrant:
A)
B)
C)
D)
E)
II or IV
II or III
I or III
I or IV
none of these
15. If sin x 
A)
B)
C)
D)
E)
12
12
and tan x  , then cos x equals:
13
5
5
13
64
144
144
65
13
5
none of these
16. The area of the region enclosed by the graph of x  y  2 is:
A)
B)
C)
D)
E)
2
4
6
8
none of these
17. An equation for the graph obtained by shifting the graph of y  2 x  5 three units to
the left is:
A)
B)
C)
D)
E)
y  2x  8
y  2x  1
y  2 x  11
y  2x  2
none of these
18. The period of y  sin x is:
A)
B)
C)
D)
E)
0

2

2
none of these
19. If f ( x)  4  5 cos(  x) for all real numbers x , then the range of f is:
A)
B)
C)
D)
E)
 1, 1
 9, 9
 9, 1
1, 9
none of these
20. Using interval notation, the solution set for 2 x 2  5 x  3 is:
 1 
A)   , 3 
 2 
1 
B)  ,  3   ,  
2 
1

C)   ,    3,  
2

 1

D)   ,  
 2 
E) none of these
21. If i   1 and j is a nonnegative integer, then
4j
i
n
equals:
n 0
A) 1
B)  1
C) i
D)  i
E) none of these

2 
22. The coefficient of x in the expansion of  x 

x

4
10
is:
A)  210
B)
16
C)
210
D) 3360
E) none of these

 3
23. The value of  3  
4
k 1 
A)
B)
C)
D)
E)
k 1
is:
4
7
12
7
7
4
3
none of these
24. The number of integer values of x which satisfy
A) 2
B) 5
C) 6
D) 21
E) none of these
1 2 1
 
is:
13 x 10
25. If i   1 , then 1  i  equals:
8
A)  2
B) 2
C) 2i
D) 16i
E) none of these
26. If 3x  2 y   4 and 2 x  7 y  39 , then x  y equals:
A) 2
B) 7
C) 12
D) 35
E) none of these
27. The area of the region determined by x  0 , y  0 , x  y  24 , and 2 x  y  32 is:
A)
B)
C)
D)
E)
32
192
224
384
none of these
28. If x 2  10 x  k  0 has a unique solution for x , then k equals:
A)  25
B)
0
C)
10
D)
25
E) none of these
29. A bag contains exactly 3 red marbles and x green marbles. If the probability of
1
randomly selecting a red marble from the bag is , then x equals:
4
A)
B)
C)
D)
E)
1
3
6
12
none of these
30. The number of distinct four-digit numbers that can be formed using the digits 0, 1, 2,
3, 4, 5, 6, 7, 8, and 9 if the first digit cannot be 0 and repeated digits are allowed is:
4
A)
24
B)
C) 900
D) 10000
E) none of these
31. If three fair coins are tossed, then the probability of obtaining exactly two tails is:
A)
B)
C)
D)
E)
1
3
3
8
1
2
2
3
none of these
32. If 3 x  9 x 1 , then x equals:
A)  1
1
B) 
2
C)
0
D)
2
E) none of these
1 
 1
33. An equation for the tangent line to the circle x 2  y 2  1 at the point 
,
 is:
2
 2
A) y  x  2
B) y  x  2
C) y   x  2
D) y   x  2
E) none of these
34. An equation of the slant (or oblique) asymptote of the curve defined by
2 x 2  3x  2 xy  y  6 is:
A) y  x  1
B) y   x  1
C) y  x
1
D) y  
2
E) none of these
35. If f ( x)  2 x 2  3 and h  0 , then
f ( x  h)  f ( x )
equals:
h
A) 4x  2h
B) 2h 2  3
3
C) 2h 
h
D) 4hx  2h 2
E) none of these
36. Where defined, the inverse of f ( x) 
A)
B)
C)
D)
E)
x7
2x  1
2x  1
x
 x7
2x  1
x
none of these
x7
is:
2x  1
37. When the polynomial px is divided by x  1 , the remainder is 1 . When px is
divided by x  1 , the remainder is  1 . If px is divided by x 2  1 , then the
remainder is:
A)  1
B) 1
C)  x
D) x
E) none of these
n
n
1 1  1 0
 0 6
38. If 




 , then n equals:
0 1 1 1 
 6 0 
A)  7
B)  5
C) 5
D) 7
E) none of these
39. The radius of the circle x 2  y 2  2 x  4 y  11  0 is:
A)
B)
C)
D)
E)
2
4
6
11
none of these
40. If x is the acute angle satisfying 1  sec x  tan x  3 , then sec x equals:
A)
B)
C)
D)
E)
2 3
3
3
2
2
2 3
none of these
41. If p and q are statements and the symbol ‘  ’ denotes and, ‘  ’ denotes or, ‘~’
denotes negation, and ‘  ’ denotes implication, then ~  p  q  is equivalent to:
A)
B)
C)
D)
E)
p  ~ q
pq
~ p  ~ q
~ p  q
none of these
42. The area of the triangle with vertices 0, 0 , 6, 2 , and 8, 10 is:
A)
B)
C)
D)
E)
12
16
22
25
none of these
43. The number of sets A which satisfy 2, 3  A  1, 2, 3, 4, 5 is:
A)
B)
C)
D)
E)
4
5
30
32
none of these
44. If x 2  x  3 , then x 4  x equals:
A)
B)
C)
D)
E)
9
x2  3
12  4 x
12  6 x
none of these
45. If x  y   xy
A)
B)
C)
D)
E)
x y
for all positive real numbers x and y , then 11  2 equals:
1
2
8
9
none of these
46. The coordinates of the vertex of the parabola y  4 x 2  8 x  1 are:
A)
B)
C)
D)
E)
 2, 1
1, 13
0, 1
 1,  3
none of these
47. If each of the three integers 264 , 376 , and 642 have the same remainder when
divided by the integer n , then the largest possible value of n equals:
A) 2
B) 5
C) 7
D) 12
E) none of these
48. The total cost of a pencil, eraser, and notebook is $1.00. If the notebook costs more
than two pencils, three pencils cost more than four erasers, and three erasers cost
more than a notebook, then the cost (in cents) of an eraser is:
A)
B)
C)
D)
E)
19
21
26
55
none of these
49. If  3  x  1 , then
A)
B)
C)
D)
E)
4 x 2  4 x  1  x 2  6 x  9  x 2  2 x  1 equals:
 2x  1
5
 2x  3
2x  1
none of these
50. If r, s , r  s , is the solution set of the quadratic equation ux 2  u  v x  v  0
where uv  0 , then the solution set of the quadratic equation
u 2 x 2  u 2  v 2 x  v 2  0 is:


A) r, s
B)
C)
D)
E)
r
2

, s2
 r,  s
2r, 2s
none of these
Related documents