Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
OUTLINE PROBABILITY AND THE NORMAL CURVE I. Probability A. Probability and inferential statistics B. What is probability? II. The Normal Curve A. Probability and the Normal Curve B. Properties of the Standard Normal Curve C. The Unit Normal Table III. Solving Problems with the Normal Curve A. Problem Type 1 B. Problem Type 2 C. Cautions 1 I. PROBABILITY A. Probability and Inferential Statistics  Transition to inferential statistics  Why is probability so important?  Links samples and populations Example 1: The jar is a “population” One marble is a “sample” How likely to get BLACK? But, isn’t the goal of inferential stats the opposite? Example 2: Choose 10 marbles, blindfolded “Sample” has 8 BLACK & 2 WHITE Which jar did marbles come from? This is inferential statistics! “Judgments under uncertainty” 2 B. What is probability?  likelihood of an “event” occurring  Can range from 0 (never) to 1.0 (always)  Defined in terms of a fraction, proportion, or percentage p(A) = Number of outcomes classified as A Total number of possible outcomes example #1: Toss a coin, what is probability of heads? 1 p(Heads) = 2 1 = one way to get heads 2 = two possible outcomes (heads or tails) 1 2 = .50 3 = 50% example #2: Select a card from a deck of 52 cards What is probability of selecting a king? 4 p(King) = 52 4 = four ways to get a king 52 = 52 possible outcomes 4 52 = .077 4 = 7.7%  Compute probability from a frequency distribution f p= N X 9 8 7 6 f 1 3 4 2 f = N = 10 What is the probability of selecting a score with x = 8? f p(x = 8) = N 3 = 10 = .30 = 30% What is the probability of selecting a score with x < 8? f p(x < 8) = N 6 = 10 = .60 = 60% 5 II. THE NORMAL CURVE A. Probability and the Normal Curve  Special statistical tool called the Normal Curve  Theoretical curve defined by mathematical formula  Known proportions/areas under the curve  Used to solve problems when we don’t know the population 6 B. Properties of the Standard Normal Curve            Theoretical, idealized curve Based on mathematical formula Bell-shaped, symmetrical, unimodal  = Md = Mo 50% of scores above , 50% below Standardized:  = 0,  = 1 A probability distribution, tails not anchored to axis Total area under the curve will sum to 1.0 Exact percentiles associated with each z-score Area under curve provided in Unit Normal Table Can be applied to any normal distribution once the distribution is standardized (converted to z-scores) 7 Why is the normal curve so important? (1) Many variables normally distributed in population (2) Can use normal curve to solve many problems Two types of problems: (1) What proportion of dist’n falls above, below, or between particular z-scores? (2) What z-score is associated with particular proportions/probabilities under the curve? 8 C. The Unit Normal Table (UNT) Appendix B.1: A = z-scores B = Proportion in body (larger portion) C = Proportion in tail (smaller portion) D = Proportion between µ and z  Curve is symmetrical, only + z scores shown  Columns B & C always sum to 1.0  Proportions/probabilities are always positive 9 APPENDIX B. 1 UNIT NORMAL TABLE 10 z-score cuts curve into two portions (B & C) 11 Let’s Practice! Tip: Always sketch a curve first!  Examples 1: What proportion of distribution falls above z = 1.5? p (z > 1.5) What proportion falls below z = -.5? p (z < -0.5) 12 Examples 2: What z-score separates the lower 75% from the upper 25%? (same as 75th percentile) What z-score separates the middle 60% of the distribution from the rest of the distribution? 13 III. SOLVING PROBLEMS WITH THE NORMAL CURVE HINTS AND TIPS  Two types of problems: (1) Finding proportion associated with X or z (2) Finding X or z associated with proportion  Problem Type #1 Steps to Follow: (a) (b) (c) (d) Sketch curve Convert raw score to z-score Look up proportion for this z-score Sometimes add/subtract proportions  Problem type #2 Steps to Follow: (a) Sketch curve (b) Look up z-score associated with proportion (c) Convert z-score back to a raw score (X) **Always sketch a normal curve first! 14 A. PROBLEM TYPE 1: FINDING AREA UNDER THE CURVE Problem #1:  = 60  = 10 Exam What percentage will score below 70? (1) Sketch a normal curve (2) Convert raw score to z-score z= (3) Plan your strategy (4) Refer to Unit Normal Table (Appendix B.1) 15 Problem #2:  = 60  = 10 Exam What is percentile rank of student who scored 55? (1) Sketch a normal curve (2) Convert raw score to z-score z= (3) Plan your strategy (4) Refer to UNT (Appendix B.1) 16 Problem #3:  = 60  = 10 Exam What proportion of people will score between 60 and 80? (1) Sketch a normal curve (2) Convert raw scores to z-scores z1 = z2 = (3) Plan your strategy (4) Refer to UNT (Appendix B.1) 17 Problem #4:  = 60  = 10 Exam What proportion of people will score between 50 and 80? (1) Sketch a normal curve (2) Convert raw scores to z-scores z1 = z2 = (3) Plan your strategy (4) Refer to UNT (Appendix B.1) 18 B. PROBLEM TYPE 2: FINDING A SCORE ASSOCIATED WITH A PROPORTION OR PERCENTILE Problem #5: Standardized Exam  = 60  = 10 Assign A+ to the 95th percentile What is cut-off score for earning an A+? (1) Sketch curve (2) Plan your solution (3) Refer to UNT (Appendix B.1) z= (4) Convert z-score back to raw score: x=+z x= 19 Problem #6:  = 60  = 10 Exam Assign F to 15th percentile (and below) What is cut-off score for earning an F? (1) Sketch curve (2) Plan your solution (3) Refer to UNT (Appendix B.1) z= (4) Convert z-score back to raw score: x=+z x= 20 C. Cautions In order to use the UNT to solve problems, you must:  have known  and   assume your variable is normally distributed Why? 1 If you don’t know  & , can’t compute a z-score 2 If variable is not normally distributed, percentages given by UNT won’t apply!  z-scores can be negative but proportions/percentiles cannot!  Pay close attention to the words… Above, Below, Within, Beyond THE DISTRIBUTION OF SAMPLE MEANS Inferential statistics: 21 Generalize from a sample to a population Statistics vs. Parameters Why? Population not often possible Limitation: Sample won’t precisely reflect population Samples from same population vary “sampling variability” Sampling error = discrepancy between sample statistic and population parameter 22  Extend z-scores and normal curve to SAMPLE MEANS rather than individual scores  How well will a sample describe a population?  What is probability of selecting a sample that has a certain mean?  Sample size will be critical  Larger samples are more representative  Larger samples = smaller error 23 THE DISTRIBUTION OF SAMPLE MEANS Population of 4 scores: 2 4 6 8  =5 4 random samples (n = 2): X 1= 4 X3 = 5 X2 = 6 X4 = 3  X is rarely exactly   Most X a little bigger or smaller than   Most X will cluster around   Extreme low or high values of X are relatively rare  With larger n, X s will cluster closer to µ (the DSM will have smaller error, smaller variance) 24 A Distribution of Sample Means X= 4 X= 5 X= 6 The distribution of sample means for n = 2. This distribution shows the 16 sample means obtained by taking all possible random samples of size n=2 that can be drawn from the population of 4 scores. The known population mean from which these samples were drawn is µ = 5. 25 THE DISTRIBUTION OF SAMPLE MEANS  A distribution of sample means ( X )  All possible random samples of size n  A distribution of a statistic (not raw scores) “Sampling Distribution” of X  Probability of getting an X , given known  and   Important properties (1) Mean (2) Standard Deviation (3) Shape 26 PROPERTIES OF THE DSM  Mean? X =  Called expected value of X X is an unbiased estimate of   Standard Deviation? Any X can be viewed as a deviation from   X = Standard Error of the Mean X =  n Variability of X around  Special type of standard deviation, type of “error” Average amount by which X deviates from  27 Less error = better, more reliable, estimate of population parameter  X influenced by two things: (1) Sample size (n) Larger n = smaller standard errors Note: when n = 1   X =   as “starting point” for  X ,  X gets smaller as n increases (2) Variability in population () Larger  = larger standard errors Note:  X = M 28 The distribution of sample means for random samples of size (a) n = 1, (b) n = 4, and (c) n = 100 obtained from a normal population with µ = 80 and σ = 20. Notice that the size of the standard error decreases as the sample size increases. 29  Shape of the DSM? Central Limit = DSM will approach a normal dist’n Theorem as n approaches infinity Very important! True even when raw scores NOT normal! True regardless of  or  What about sample size? (1) If raw scores ARE normal, any n will do (2) If raw scores NOT normal, n must be “sufficiently large” For most distributions  n  30 30 Why are Sampling Distributions important?  Tells us probability of getting X , given  &   Distribution of a STATISTIC rather than raw scores  Theoretical probability distribution  Critical for inferential statistics!  Allows us to estimate likelihood of making an error when generalizing from sample to popl’n  Standard error = variability due to chance  Allows us to estimate population parameters  Allows us to compare differences between sample means – due to chance or to experimental treatment?  Sampling distribution is the most fundamental concept underlying all statistical tests 31 Working with the Distribution of Sample Means  If we assume DSM is normal  If we know  &   We can use Normal Curve & Unit Normal Table! z = X  x Example #1:  = 80  = 12 What is probability of getting X  86 if n = 9? 32 Example #1b:  = 80  = 12 What if we change n =36 What is probability of getting X  86 33 Example #2:  = 80  = 12 What X marks the point beyond which sample means are likely to occur only 5% of the time? (n = 9) 34 35