Download 2 - edl.io

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Solutions Solutions Solutions Solutions Solutions Solutions Solutions Solutions Solutions Solutions
Calculus 1
Worksheet #13 Even
Review for Test #3
2
f ( x)  3x  4  f '( x)  lim
h 0
4
f(x)=
2
x4
f '( x)  lim
2
2

 x  h  4 x  4
h 0
 lim
h 0
6
8
10
3( x  h)  4  (3x  4)
3x  3h  4  3x  4
3h
 lim
 lim
 lim 3  3
h

0
h

0
h
h
h h 0
 lim
 x  h  4
2
( x  4)
2



 x  h   4 ( x  4) x  4  x  h   4
h 0
h
2( x  4)  2   x  h   4 
= lim 
 x  h  4  ( x  4)
h 0
h
h

2 x  8  2 x  2h  8
2h
2
2
 lim
 lim

h

0
h

0
h  x  h  4  ( x  4)
h  x  h  4  ( x  4)
 x  h  4  ( x  4) ( x  4)2
1
1
d
d
1
3  2 x   3  2 x  2   3  2 x  2   2  
dx
dx
2
2
1
y  3x 3  4 x 2  2 
1
3  2x
1
1
1
1
dy 2
1
  3x 3   4 x 2  2 x 3  2 x 2
dx 3
2
1
 2 x 
1

1  x2
x2
1  x 2 (1)  x 
1  x 2 (1)  x  1  x 2  2  2 x  


2
1
x
dy
1  x2 
2

 2 1 x  
y


2
2
dx
1  x2
1  x2
1  x2
1  x2




1  x2  x2
1  x2
1  x2
12
14
16

1
1  x 
2
1  x2
or
1
1  x 
2 3
1
 y '   x 2  y ''  2 x 3  y '''  6 x 4  y iv  24 x 5  y iv (1)  24(1) 5  24
x
y  5 y'  0
y
x
x
x
2x
3x
 1 
f ( x)  x x  f '( x)  x 





  x 1 
1
2 x
2 x 2 x
2 x
2 x 
3
3x
x
3x x 3 x
3 1 3



or smarter! f ( x)  x x  x 2  f '( x)  x 2 
x
2x
2
2
2
2 x
x
18
20
22
y   x 2  2  x 1  2  
d 2
x  2  x 1  2    x 1  2   2 x    x 2  2   x 2   2  4 x  1  2 x 2  1  2 x 2  4 x

dx
2 5
d
2 5
2 10
y  3x 2   2  (3x 2   2 )  6 x  2  3
x x
dx
x x
x
x
3( x  1) 2  2 
6( x  1) 2
 x 1 
 x  1   ( x  1)(1)  ( x  1)(1) 
f ( x)  
  f '( x) 

  f '( x) 
  f '( x)  3 
 
( x  1) 2
( x  1) 2  ( x  1) 2 
( x  1) 4
 x 1
 x 1 

24 Find the x and y intercepts of the line that is tangent to the curve y = x3 at the point (-2,-8)
3
2
Solutions Solutions Solutions Solutions Solutions Solutions Solutions Solutions Solutions Solutions
Calculus 1
Worksheet #13 Even
Review for Test #3
x  int@(4 / 3, 0)
y  x3  y '  3x 2  y '(2)  12  y  8  12( x  2)  y  12 x  16 
y  int@(0,16)
26
1
Find the slope of the normal to f(x) =2x3+x2-1 at the point x= .
2
5
2
1
1
1 3
f '( x)  6 x 2  2 x  f '    6    2     1 
Slope of the normal 
2
5
2
4
2 2
28
1
Graph the function whose equation is g(x)=
then find and graph the tangent at point (3, f(3))
x2
1
1
g ( x) 
 g '( x) 
 g '(3)  1  y  1  1( x  3)  y   x  4
x2
( x  2)2
30 Graph the function y  2 x 2  4 x  1 then find and graph the tangent line at the point where x=1.
y  2 x 2  4 x  1; tangent at x=1
y  2( x 2  2 x  1)  1  2  y  2( x  1) 2  3  y '  4 x  4  y '(1)  8  y  5  8( x  1)  y  8 x  3
32 Find the points on the curve x  1 where the tangent is parallel to the y-axis.
1
y  x  1  y ' 
 undefined @(1, 0)
2 x 1
34
dy
Find
for y   x  1  x 2  5 x  1 then find the slope of the tangent when x=3
dx
dy
dy
y  ( x  1)( x 2  5 x  1) 
 ( x  1)(2 x  5)  ( x 2  5 x  1)(1) 
 2 x2  5x  2 x  5  x2  5x  1
dx
dx
dy
dy
 3x 2  8 x  6  (3)  27  24  6  45
dx
dx
36 Find the slope of the tangent line and the normal line to the curve y  x x  1 at the point where x=1.
dy
dy
x
dy
1
2 4 2 5 2
 1 
 x
 x  1(1) 

 x  1  (1) 
 2 



dx
dx 2 x  1
dx
4
4
4
2 2
 2 x 1 
2 2
5 2
The slope of the normal 
5
4
38 If the slope of a tangent line is 5 then what is the slope of the normal line to the same curve at the same point?
1
5
2
40
 x 1 
Find the equation of the normal line to the curve f ( x)  
 at the point where x=2.
 x 1
The slope of the tangent 
2
 x 1 
 x 1
 x  1   ( x  1)(1)  ( x  1)(1) 
 x  1   2 
f ( x)  
  2
  f ( x)  
  f '( x)  2 


2
2 
( x  1)
 x 1
 x 1 
 x 1  
 x  1   ( x  1) 


2
4( x  1)
4(3)
1
1
 f '(2) 
 12  Slope of normal   y  9  ( x  2)
3
( x  1)
1
12
12
Related documents