Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Statistics for management and Economics, Seventh Edition Formulas Numerical Descriptive techniques Population mean N x i i 1 = N Sample mean n x x i i 1 n Range Largest observation - Smallest observation Population variance N ( x ) 2 i 2 = i 1 N Sample variance n s2 = (x i 1 i x)2 n 1 Population standard deviation = 2 Sample standard deviation s= s2 Population covariance N xy ( x x )( y i y ) i i 1 N Sample covariance n ( x i x )( y i y ) i 1 s xy n 1 Population coefficient of correlation xy x y Sample coefficient of correlation r s xy sx sy Slope coefficient b1 cov( x , y ) s x2 y-intercept b0 y b1 x Probability Conditional probability P(A|B) = P(A and B)/P(B) Complement rule C P( A ) = 1 – P(A) Multiplication rule P(A and B) = P(A|B)P(B) Addition rule P(A or B) = P(A) + P(B) - P(A and B) Bayes’ Law Formula P(A i | B) P( A i ) P( B | A i ) P( A 1 ) P( B | A 1 ) P( A 2 ) P( B | A 2 ) . . . P( A k ) P( B | A k ) Random Variables and Discrete Probability Distributions Expected value (mean) E(X) = xP( x ) all x Variance V(x) = 2 ( x ) P( x ) 2 all x Standard deviation 2 Covariance COV(X, Y) = ( x x )( y y )P( x , y ) Coefficient of Correlation COV ( X , Y ) x y Laws of expected value 1. E(c) = c 2. E(X + c) = E(X) + c 3. E(cX) = cE(X) Laws of variance 1.V(c) = 0 2. V(X + c) = V(X) 2 3. V(cX) = c V(X) Laws of expected value and variance of the sum of two variables 1. E(X + Y) = E(X) + E(Y) 2. V(X + Y) = V(X) + V(Y) + 2COV(X, Y) Laws of expected value and variance for the sum of more than two variables 1. E ( 2. V ( k k i 1 i 1 k k i 1 i 1 X i ) E( X i ) X i ) V ( X i ) if the variables are independent Mean and variance of a portfolio of two stocks E(Rp) = w1E(R1) + w2E(R2) V(Rp) = w12 V(R1) + w22 V(R2) + 2 w1 w2 COV(R1, R2) = w12 12 + w22 22 + 2 w1 w2 1 2 Mean and variance of a portfolio of k stocks k E(Rp) = w E(R ) i i i 1 k V(Rp) = k k w w COV (R , R ) wi2 i2 2 i 1 i j i 1 j i 1 Binomial probability P(X = x) = n! p x ( 1 p ) n x x! ( n x )! np 2 np( 1 p ) np( 1 p ) Poisson probability P(X = x) = e x x! Continuous Probability Distributions Standard normal random variable i j Z X Exponential distribution 1/ P(X x) e x P(X x) 1 e x P(x1 X x 2 ) P(X x 2 ) P(X x1 ) e x1 e x 2 F distribution F1 A, 1 , 2 = 1 FA, 2 , 1 Sampling Distributions Expected value of the sample mean E( X ) x Variance of the sample mean V ( X ) 2x 2 n Standard error of the sample mean x n Standardizing the sample mean Z X / n Expected value of the sample proportion E (Pˆ ) pˆ p Variance of the sample proportion p (1 p ) V ( Pˆ ) 2pˆ n Standard error of the sample proportion pˆ p (1 p ) n Standardizing the sample proportion Z Pˆ p p (1 p ) n Expected value of the difference between two means E ( X 1 X 2 ) x1 x2 1 2 Variance of the difference between two means V ( X 1 X 2 ) x21 x2 12 n1 22 n2 Standard error of the difference between two means x1 x2 12 22 n1 n 2 Standardizing the difference between two sample means Z ( X 1 X 2 ) (1 2 ) 12 22 n1 n 2 Introduction to Estimation Confidence interval estimator of x z / 2 n Sample size to estimate z n / 2 W 2 Introduction to Hypothesis Testing Test statistic for z x / n Inference about One Population Test statistic for t x s/ n Confidence interval estimator of x t / 2 s n Test statistic for 2 2 ( n 1 )s 2 2 Confidence interval Estimator of 2 LCL = UCL = ( n 1 )s 2 2 / 2 ( n 1 )s 2 12 / 2 Test statistic for p z p̂ p p( 1 p ) / n Confidence interval estimator of p p̂ z / 2 p̂( 1 p̂ ) / n Sample size to estimate p z p̂( 1 p̂ ) n /2 W 2 Confidence interval estimator of the total of a large finite population s N x t / 2 n Confidence interval estimator of the total number of successes in a large finite population p̂( 1 p̂ N p̂ z / 2 n Confidence interval estimator of when the population is small x t / 2 s n N n N 1 Confidence interval estimator of the total in a small population s N x t / 2 n N n N 1 Confidence interval estimator of p when the population is small p z / 2 p̂( 1 p̂ ) n N n N 1 Confidence interval estimator of the total number of successes in a small population N p̂ z / 2 p̂( 1 p̂ ) N n n N 1 Inference About Two Populations Equal-variances t-test of 1 2 t ( x1 x 2 ) ( 1 2 ) s 2p 1 1 n n 2 1 n1 n2 2 Equal-variances interval estimator of 1 2 1 1 ( x1 x 2 ) t / 2 s 2p n1 n 2 Unequal-variances t-test of 1 2 n1 n2 2 t ( x1 x 2 ) ( 1 2 ) s12 s 22 n1 n 2 ( s12 / n1 s22 / n2 )2 ( s12 / n1 )2 ( s22 / n2 )2 n1 1 n2 1 Unequal-variances interval estimator of 1 2 ( x1 x 2 ) t / 2 s12 s 22 n1 n 2 ( s12 / n1 s22 / n2 )2 ( s12 / n1 )2 ( s22 / n2 )2 n1 1 n2 1 t-Test of D t xD D nD 1 sD / nD t-Estimator of D x D t / 2 sD nD 1 nD F-test of 12 / 22 F= s12 1 n1 1 and 2 n2 1 s22 F-Estimator of 12 / 22 s2 LCL = 12 s 2 1 F / 2 , , 1 2 s2 UCL = 12 s 2 F / 2 , , 2 1 z-Test and estimator of p1 p 2 Case 1: z Case 2: z ( p̂1 p̂ 2 ) 1 1 p̂( 1 p̂ ) n n 2 1 ( p̂1 p̂2 ) ( p1 p2 ) p̂1( 1 p̂1 ) p̂2 ( 1 p̂2 ) n1 n2 z-estimator of p1 p 2 p̂1( 1 p̂1 ) p̂2 ( 1 p̂2 ) n1 n2 ( p̂1 p̂2 ) z / 2 Analysis of Variance One-way analysis of variance k n ( x SST = j j x )2 j 1 k nj ( x SSE = j 1 i 1 MST = SST k 1 MSE = SSE nk F= x j )2 ij MST MSE Two-way analysis of variance (randomized block design of experiment) k SS(Total) = b ( x j 1 ij x )2 i 1 k SST = b( x [ T ] j x )2 i 1 b SSB = k( x [ B ] x ) 2 i i 1 k SSE = b ( x ij j 1 i 1 MST = SST k 1 MSB = SSB b 1 x [ T ] j x [ B ]i x )2 MSE = SSE n k b 1 F= MST MSE F= MSB MSE Two-factor experiment a SS(Total) = b r ( x ijk x )2 i 1 j 1 k 1 a SS(A) = rb ( x [ A ] x ) 2 i i 1 b SS(B) = ra ( x [ B ] j x )2 j 1 a SS(AB) = r b ( x [ AB ] ij x [ A ]i x [ B ] j x )2 i 1 j 1 a SSE = b r ( x ijk x [ AB ]ij )2 i 1 j 1 k 1 F= MS(A) MSE F= MS(B) MSE F= MS(AB) MSE Least Significant Difference Comparison Method 1 1 LSD = t / 2 MSE ni n j Tukey’s multiple comparison method q ( k , ) Chi-Squared Tests MSE ng Test statistic for all procedures (f i e i ) 2 ei k 2 i 1 Simple Linear Regression Sample slope b1 s xy s x2 Sample y-intercept b0 y b1 x Sum of squares for error n SSE = ( y i ŷ i ) 2 i 1 Standard error of estimate s SSE n2 Test statistic for the slope t b1 1 s b1 Standard error of s b1 b1 s ( n 1 )s x2 Coefficient of determination R2 2 s xy s x2 s 2y 1 SSE ( y i y )2 Prediction interval ŷ t / 2 ,n 2 s 1 2 1 ( xg x ) n ( n 1 )s x2 Confidence interval estimator of the expected value of y ŷ t / 2 ,n 2 s 2 1 ( xg x ) n ( n 1 )s x2 Sample coefficient of correlation r s xy sx sy Test statistic for testing = 0 tr n2 1 r 2 Multiple Regression Standard Error of Estimate s SSE n k 1 Test statistic for i t bi i s bi Coefficient of Determination R2 2 s xy s x2 s 2y 1 SSE ( yi y )2 Adjusted Coefficient of Determination Adjusted R 2 1 SSE /( n k 1 ) ( y y ) 2 i Mean Square for Error MSE = SSE/k Mean Square for Regression MSR = SSR/(n-k-1) /( n 1 ) F-statistic F = MSR/MSE Durbin-Watson statistic n d ( e i ei 1 ) 2 i2 n e 2 i i 1 Time Series Analysis and Forecasting Exponential smoothing S t wyt (1 w)S t 1 Nonparametric Statistical techniques Wilcoxon rank sum test statistic T T1 E(T) = n1 ( n1 n 2 1 ) 2 T n1 n 2 ( n1 n 2 1 ) 12 z T E( T ) T Sign test statistic x = number of positive differences z x .5n .5 n Wilcoxon signed rank sum test statistic T T E(T) = n( n 1) 4 T z n( n 1 )( 2n 1 ) 24 T E( T ) T Kruskal-Wallis Test 12 H n( n 1 ) T j2 3( n 1 ) n j 1 j k Friedman Test 12 Fr b( k )( k 1 ) T j2 3b( k 1 ) j 1 k Spearman rank correlation coefficient rS s ab s a sb Spearman Test statistic for n > 30 z rS n 1 Statistical Process Control Centerline and control limits for x chart using S Centerline = x Lower control limit = x 3 S n Upper control limit = x 3 S n Centerline and control limits for the p chart Centerline = p Lower control limit = p 3 p( 1 p ) n Upper control limit = p 3 p( 1 p ) n Decision Analysis Expected Value of perfect Information EVPI = EPPI - EMV* Expected Value of Sample Information EVSI = EMV' - EMV*