Download Elena L

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
1
Elena L. Zvereva and Mikhail V. Kozlov. The costs and effectiveness of chemical defenses in
2
herbivorous insects: a meta-analysis. Ecological Monographs. Accepted Manuscript.
3
4
Supplement
5
Data used in meta-analysis of the effectiveness and costs of chemical defenses
6
7
Author(s)
8
Elena L. Zvereva
9
Section of Ecology
10
University of Turku
11
20014
12
Turku, Finland
13
E-mail: [email protected]
14
15
Mikhail V. Kozlov
16
Section of Ecology
17
University of Turku
18
20014
19
Turku, Finland
20
21
File list
22
Zvereva-Kozlov-effectiveness.txt
23
Zvereva-Kozlov-costs.txt
24
1
25
Description
26
27
Zvereva-Kozlov-effectiveness.txt Tab-delimited text file containing the data that
28
have been extracted from original publications and used in meta-analysis of the efficiency of
29
chemical defenses of herbivorous insects. The file contains the following columns:
30
1) Reference (see the list below).
31
2) Prey species or group of species (as reported in the original publication).
32
3) Prey family.
33
4) Prey order.
34
5) Prey stage (egg, larva/nympha, pupa, imago).
35
6) Origin of secretion (derived from host plant: sequestered, i.e., uptake with accumulation,
36
or acquired, i.e., uptake without accumulation; or synthesized de novo).
37
7) Host plant of a prey (as reported in the original publication).
38
8) Host plant family.
39
9) Major defensive compound(s) (as reported in the original publication).
40
10) Toxic properties (of major defensive compounds, as reported in the original publication or
41
in review papers).
42
11) Morphological defenses.
43
12) Conspicuousness.
44
13) Gregariousness.
45
14) Externalization of defenses.
46
15) Active defensive behaviour.
47
16) Prey diet breadth.
48
17) Experimental environment (field or laboratory).
2
49
18) Enemy species or group of species (as reported in the original publication).
50
19) Predator group.
51
20) Selected species or complex of enemies (the latter refers to field experiments where all
52
enemies inhabiting study area may have accessed experimental prey).
53
21) Vertebrate or invertebrate enemy.
54
22) Enemy trophic strategy (predator or parasitoid).
55
23) Enemy diet breadth.
56
24) Enemy search cues (chemical or visual).
57
25) Enemy experience (naïve, experienced in the experiment with a certain prey, or wild-
58
caught or observed in nature, i.e., having uncontrolled experience with a wide range of
59
prey).
60
26) Test object (alive prey, dead prey, prey secretions or extract).
61
27) Control object (another non-defended prey species or the same prey species lacking
62
defenses due to depletion of secretions or rearing on a diet lacking precursors).
63
64
65
66
28) Measured character (deterrence, prey acceptance, prey survival, frequency of predator
attacks).
29) Effect size calculation (means, direct calculation of Hedges’ d; odds,recalculated from
odds ratio).
67
30) d (Hedges’ d measure of effect size).
68
31) Var(d).
69
70
Zvereva-Kozlov-costs.txt Tab-delimited text file containing the data that have been
71
extracted from original publications and used in meta-analysis of the costs of chemical defenses
72
of herbivorous insects. The file contains the following columns:
3
73
1. Reference (see the list below).
74
2. Prey species or group of species (as reported in the original publication).
75
3. Prey family.
76
4. Prey order.
77
5. Prey stage (egg, larva/nympha, imago).
78
6. Origin of secretion (derived from host plant: sequestered, i.e., uptake with accumulation,
79
or acquired, i.e., uptake without accumulation; or synthesized de novo).
80
7. Host plant of a prey (as reported in the original publication).
81
8. Host plant family.
82
9. Major defensive compound(s) (as reported in the original publication).
83
10. Group of defensive compounds (alkaloids; aristolochic acid; butyric esters; glucosides;
84
salicylaldehyde; terpenes).
85
11. Externalization of defenses.
86
12. Localization of defenses (body, regurgitation, secretion).
87
13. Prey diet breadth.
88
14. Diet used in the experiment (plant or artificial diet).
89
15. Method used in the experiment (depleting regurgitants/secretions or using plants or
90
91
92
93
94
artificial diet with different concentrations of allelochemicals).
16. Measured character (consumption rate, developmental time, fat content, fecundity,
relative growth rate, survival, weight).
17. Effect size calculation (means, direct calculation of Hedges’ d; correlations, recalculated
from correlation coefficient).
95
18. d (Hedges’ d measure of effect size).
96
19. Var(d).
4
97
98
References
99
Alcock, J. 1973. Feeding response of hand-reared red-winged blackbirds (Agelaius phoeniceus)
100
to a stinkbug (Euschistus conspersus). American Midland Naturalist 89:307–313.
101
102
103
Aliabadi, A., J. A. A. Renwick, and D. W. Whitman. 2002. Sequestration of glucosinolates by
harlequin bug Murgantia histrionica. Journal of Chemical Ecology 28:1749–1762.
Baden, C. U., and S. Dobler. 2009. Potential benefits of iridoid glycoside sequestration in
104
Longitarsus melanocephalus (Coleoptera, Chrysomelidae). Basic and Applied Ecology
105
10:27–33.
106
Baden, C. U., T. Geier, S. Franke, and S. Dobler. 2011. Sequestered iridoid glycosides—highly
107
effective deterrents against ant predators? Biochemical Systematics and Ecology 39:897–
108
901.
109
110
111
112
113
114
115
116
117
Barber, J. R., and W. E. Conner. 2007. Acoustic mimicry in a predator-prey interaction.
Proceedings of the National Academy of Sciences 104:9331–9334.
Barbercheck, M. E., J. Wang, and I. S. Hirsh. 1995. Host plant effects on entomopathogenic
nematodes. Journal of Invertebrate Pathology 66:169–177.
Bardwell, C. J., and A. L. Averill. 1996. Effectiveness of larval defenses against spider predation
in cranberry ecosystems. Environmental Entomology 25:1083–1091.
Berenbaum, M. R., and E. Miliczky. 1984. Mantids and milkweed bugs: efficacy of aposematic
coloration against invertebrate predators. American Midland Naturalist 111:64–68.
Berenbaum, M. R., B. Moreno, and E. Green. 1992. Soldier bug predation on swallowtail
118
caterpillars (Lepidoptera: Papilionidae): circumvention of defensive chemistry. Journal of
119
Insect Behavior 5:547–553.
5
120
Bezzerides, A., T.-H. Yong, J. Bezzerides, J. Husseini, J. Ladau, M. Eisner, and T. Eisner. 2004.
121
Plant-derived pyrrolizidine alkaloid protects eggs of a moth (Utetheisa ornatrix) against a
122
parasitoid wasp (Trichogramma ostriniae). Proceedings of the National Academy of
123
Sciences 101:9029–9032.
124
125
126
Björkman, C., and S. Larsson. 1991. Pine sawfly defense and variation in host plant resin acids: a
trade-off with growth. Ecological Entomology 16:283–289.
Björkman, C., S. Larsson, and R. Bommarco. 1997. Oviposition preferences in pine sawflies: a
127
trade-off between larval growth and defence against natural enemies. Oikos 79:45–52.
128
Boevé, J.-L. 1991. Gregariousness, field distribution and defense in the sawfly larvae Croesus
129
130
131
132
133
134
varus and C. septentrionalis (Hymenoptera, Tenthredinidae). Oecologia 85:440–446.
Boevé, J.-L., H. Gfeller, U. P. Schlunegger, and W. Francke. 1997. The secretion of the ventral
glands in Hoplocampa sawfly larvae. Biochemical Systematics and Ecology 25 :195–201.
Boevé, J.-L., and C. Müller. 2005. Defence effectiveness of easy bleeding sawfly larvae towards
invertebrate and avian predators. Chemoecology 15:51–58.
Bottcher, A., J. P. Zolin, F. Nogueira-de-Sá, and J. R. Trigo. 2009. Faecal shield chemical
135
defence is not important in larvae of the tortoise beetle Chelymorpha reimoseri
136
(Chrysomelidae: Cassidinae: Stolaini). Chemoecology 19:63–66.
137
138
139
140
141
142
Bowers, M. D. 1980. Unpalatability as a defense strategy of Euphydryas phaeton (Lepidoptera:
Nymphalidae). Evolution 34:586–600.
Bowers, M. D. 1981. Unpalatability as a defense strategy of western checkerspot butterflies
(Euphydryas scudder, Nymphalidae). Evolution 35:367–375.
Bowers, M. D. 1983. Mimicry in North American checkerspot butterflies: Euphydryas phaeton
and Chlosyne harrisii (Nymphalidae). Ecological Entomology 8:1–8.
6
143
144
145
146
147
148
149
Bowers, M. D. 2003. Hostplant suitability and defensive chemistry of the catalpa sphinx,
Ceratomia catalpae. Journal of Chemical Ecology 29:2359–2367.
Bowers, M. D., and S. Farley. 1990. The behavior of gray jays, Perisoreus canadensis, towards
palatable and unpalatable Lepidoptera. Animal Behaviour 39:699–705.
Bowers, M. D., and Z. Larin. 1989. Acquired chemical defense in the lycaenid butterfly,
Eumaeus atala. Journal of Chemical Ecology 15:1133–1146.
Brower, J. W. Z. 1958a. Experimental studies of mimicry in some North American butterflies.
150
Part 1. The monarch, Danaus plexippus, and viceroy, Limenitis archippus archippus.
151
Evolution 12:32–47.
152
Brower, J. W. Z. 1958b. Experimental studies of mimicry in some North American butterflies.
153
Part 2. Battus philenor and Papilio troilus, P. polyxenes and P. glaucus. Evolution
154
12:123–136.
155
156
157
Brower, L. P., and J. W. Z. Brower. 1964. Birds, butterflies, and plant poisons: a study in
ecological chemistry. Zoologica 49:137–159.
Brust, G. E., and M. E. Barbercheck. 1992. Effect of dietary cucurbitacin C on southern corn
158
rootworm (Coleoptera: Chrysomelidae) egg survival. Environmental Entomology
159
21:1466–1471.
160
Bünnige, M., and M. Hilker. 1999. Larval exocrine glands in the galerucine Agelastica alni L.
161
(Coleoptera: Chrysomelidae): their morphology and possible functions. Chemoecology
162
9:55–62.
163
Calcagno, M. P., J. L. Avila, I. Rudman, L. D. Otero, and M. E. Alonso-Amelot. 2004. Food-
164
dependent regurgitate effectiveness in the defence of grasshoppers against ants: the case
165
of bracken-fed Abracris flavolineata (Orthoptera: Acrididae). Physiological Entomology
166
29:123–128.
7
167
Camara, M. D. 1997a. Physiological mechanisms underlying the costs of chemical defence in
168
Junonia coenia Hübner (Nymphalidae): a gravimetric and quantitative genetic analysis.
169
Evolutionary Ecology 11:451–469.
170
171
172
173
Camara, M. D. 1997b. Predator responses to sequestered plant toxins in buckeye caterpillars: are
tritrophic interactions locally variable? Journal of Chemical Ecology 23:2093–2106.
Camarano, S., A. González, and C. Rossini. 2006. Chemical defense of the ladybird beetle
Epilachna paenulata. Chemoecology 16:179–184.
174
Carrell, J. E. 2001. Response of predaceous arthropods to chemically defended larvae of the
175
pyralid moth Uresiphita reversalis (Guenée) (Lepidoptera: Pyralidae). Journal of the
176
Kansas Entomological Society 74:128–135.
177
178
179
Castillo-Guevara, C., and V. Rico-Gray. 2002. Is cycasin in Eumaeus minyas (Lepidoptera:
Lycaenidae) a predator deterrent? Interciencia 27:465–470.
Chai, P. 1986. Field observations and feeding experiments on the responses of rufous-tailed
180
jacamars (Galbula ruficauda) to free-flying butterflies in a tropical rainforest. Biological
181
Journal of the Linnean Society 29:161–189.
182
Chaplin-Kramer, R., D. J. Kliebenstein, A. Chiem, E. Morrill, N. J. Mills, and C. Kremen. 2011.
183
Chemically mediated tritrophic interactions: opposing effects of glucosinolates on a
184
specialist herbivore and its predators. Journal of Applied Ecology 48:880–887.
185
186
Chow, Y. S., and R. S. Tsai. 1989. Protective chemicals in caterpillar survival. Experientia
45:390–392.
187
Codella, S. G., and R. C. Lederhouse. 1989. Intersexual comparison of mimetic protection in the
188
black swallowtail butterfly, Papilio polyxenes: experiments with captive blue jay
189
predators. Evolution 43:410–420.
8
190
191
192
Codella, S. G., and K. F. Raffa. 1995. Host plant influence on chemical defense in conifer
sawflies (Hymenoptera: Diprionidae). Oecologia 104:1–11.
Codella, S. G., and K. F. Raffa. 1996. Individual and social components of wood ant response to
193
conifer sawfly defence (Hymenoptera: Formicidae, Diprionidae). Animal Behaviour
194
52:801–811.
195
Cogni, R., J. R. Trigo, and D. J. Futuyma. 2012. A free lunch? No cost for acquiring defensive
196
plant pyrrolizidine alkaloids in a specialist arctiid moth (Utetheisa ornatrix). Molecular
197
Ecology 21:6152–6162.
198
Cohen, J. A. 1985. Differences and similarities in cardenolide contents of queen and monarch
199
butterflies in Florida and their ecological and evolutionary implications. Journal of
200
Chemical Ecology 11:85–103.
201
Cornelius, M. L., and E. A. Bernays. 1995. The effect of plant chemistry on the acceptability of
202
caterpillar prey to the Argentine ant Iridomyrmex humilils (Hymenoptera: Formicidae).
203
Journal of Insect Behavior 8:579–593.
204
205
206
Damman, H. 1986. The osmaterial glands of the swallowtail butterfly Eurytides marcellus as a
defense against natural enemies. Ecological Entomology 11:261–265.
del Campo, M. L., S. R. Smedley, and T. Eisner. 2005. Reproductive benefits derived from
207
defensive plant alkaloid possession in an arctiid moth (Utetheisa ornatrix). Proceedings of
208
the National Academy of Sciences 102:13508–13512.
209
210
211
212
Denno, R. F., S. Larsson, and K. L. Olmstead. 1990. Role of enemy-free space and plant quality
in host-plant selection by willow beetles. Ecology 71:124–137.
Dussourd, D. E., K. Ubik, C. Harvis, J. Resch, J. Meinwald, and T. Eisner. 1988. Defense
mechanisms of arthropods. 86. Biparental defensive endowment of eggs with acquired
9
213
plant alkaloid in the moth Utetheisa ornatrix. Proceedings of the National Academy of
214
Sciences 85:5992–5996.
215
216
217
218
219
Eben, A., and M. E. Barbercheck. 1997. Host plant and substrate effects on mortality of southern
corn rootworm from entomopathogenic nematodes. Biological Control 8:89–96.
Eisner, T., and M. Eisner. 1991. Unpalatability of the pyrrolizidine alkaloid-containing moth
Utethesia ornatrix, and its larva, to wolf spiders. Psyche 98:111–118.
Eisner, T., M. Eisner, C. Rossini, V. K. Iyengar, B. L. Roach, E. Benedikt, and J. Meinwald.
220
2000. Chemical defense against predation in an insect egg. Proceedings of the National
221
Academy of Sciences 97:1634–1639.
222
223
224
225
Eisner, T., M. Goetz, D. Aneshansley, G. Ferstandig-Arnold, and J. Meinwald. 1986. Defensive
alkaloid in blood of Mexican bean beetle (Epilachna varivestis). Experientia 42 :204–207.
Evans, D. L., N. Castoriades, and H. Badruddine. 1986. Cardenolides in the defense of
Caenocoris nerii (Hemiptera). Oikos 46:325–329.
226
Ferguson, J. E., and R. L. Metcalf. 1985. Cucurbitacins: plant-derived defense compounds for
227
Diabroticites (Coleoptera, Chrysomelidae). Journal of Chemical Ecology 11:311–318.
228
Ferro, V. G., P. R. Guimaráes, and J. R. Trigo. 2006. Why do larvae of Utetheisa ornatrix
229
penetrate and feed in pods of Crotalaria species? Larval performance vs. chemical and
230
physical constraints. Entomologia Experimentalis et Applicata 121:23–29.
231
232
233
Finlayson, C., A. Alyokhin, S. Gross, and E. Porter. 2010. Differential consumption of four aphid
species by four lady beetle species. Journal of Insect Science 10:31.
Fordyce, J. A. 2001. The lethal plant defense paradox remains: inducible host-plant aristolochic
234
acids and the growth and defense of the pipevine swallowtail. Entomologia
235
Experimentalis et Applicata 100:339–346.
10
236
237
238
Fordyce, J. A., and C. C. Nice. 2008. Antagonistic, stage-specific selection on defensive chemical
sequestration in a toxic butterfly. Evolution 62:1610–1617.
Frankfater, C., M. R. Tellez, and M. Slattery. 2009. The scent of alarm: ontogenetic and genetic
239
variation in the osmeterial gland chemistry of Papilio glaucus (Papilionidae) caterpillars.
240
Chemoecology 19:81–96.
241
Fuente, M. A., L. A. Dyer, and M. D. Bowers. 1995. The iridoid glycoside, catalpol, as a
242
deterrent to the predator Camponotus floridanus (Formicidae). Chemoecology 5/6:13–18.
243
Gentry, G. L., and L. A. Dyer. 2002. On the conditional, nature of neotropical caterpillar defenses
244
245
against their natural enemies. Ecology 83:3108–3119.
Gómez, N. E., L. Witte, and T. Hartmann. 1999. Chemical defense in larval tortoise beetles:
246
essential oil composition of fecal shields of Eurypedus nigrosignata and foliage of its host
247
plant, Cordia curassavica. Journal of Chemical Ecology 25:1007–1027.
248
González, A., C. Rossini, M. Eisner, and T. Eisner. 1999. Sexually transmitted chemical defense
249
in a moth (Utetheisa ornatrix). Proceedings of the National Academy of Sciences
250
96:5570–5574.
251
Gould, F., and A. Massey. 1984. Cucurbitacins and predation of the spotted cucumber beetle,
252
Diabrotica undecimpunctata howardi. Entomologia Experimentalis et Applicata 36:273–
253
278.
254
255
256
Grant, J. B. 2007. Ontogenetic colour change and the evolution of aposematism: a case study in
panic moth caterpillars. Journal of Animal Ecology 76:439–447.
Gross, J., N. E. Fatouros, S. Neuvonen, and M. Hilker. 2004. The importance of specialist natural
257
enemies for Chrysomela lapponica in pioneering a new host plant. Ecological
258
Entomology 29:584–593.
11
259
Gunawardena, N. E., and M. K. Bandumathie. 1993. Defensive secretion of rice bug, Leptocorisa
260
oratorius Fabricius (Hemiptera: Coreidae): a unique chemical combination and its toxic,
261
repellent, and alarm properties. Journal of Chemical Ecology 19:851–861.
262
Hare, J. F., and T. Eisner. 1993. Defense mechanisms of arthropods.118. Pyrrolizidine alkaloid
263
deters ant predators of Utetheisa ornatrix eggs: effects of alkaloid concentration,
264
oxidation state, and prior exposure of ants to alkaloid-laden prey. Oecologia 96:9–18.
265
Harvey, J. A., S. van Nouhuys, and A. Biere. 2005. Effects of quantitative variation in
266
allelochemicals in Plantago lanceolata on development of a generalist and a specialist
267
herbivore and their endoparasitoids. Journal of Chemical Ecology 31:287–302.
268
269
270
271
272
Hatle, J. D., and V. R. Townsend. 1996. Defensive secretion of a flightless grasshopper: failure to
prevent lizard attack. Chemoecology 7:184–188.
Hetz, M., and C. N. Slobodchikoff. 1988. Predation pressure on an imperfect Batesian mimicry
complex in the presence of alternative prey. Oecologia 76:570–573.
Higginson, A. D., J. Delf, G. D. Ruxton, and M. P. Speed. 2011. Growth and reproductive costs
273
of larval defence in the aposematic lepidopteran Pieris brassicae. Journal of Animal
274
Ecology 80:384–392.
275
276
277
Hilker, M. 1992. Protective devices of early developmental stages in Pyrrhalta viburni
(Coleoptera, Chrysomelidae). Oecologia 92:71–75.
Hilker, M., C. Häberlein, U. Trauer, M. Bünnige, M. O. Vicentini, and S. Schulz. 2010. How to
278
spoil the taste of insect prey? A novel feeding deterrent against ants released by larvae of
279
the alder leaf beetle, Agelastica alni. Chembiochem 11:1720–1726.
280
281
Hilker, M., and A. Köpf. 1994. Evaluation of the palatability of chrysomelid larvae containing
anthraquinones to birds. Oecologia 100:421–429.
12
282
283
Hilker, M., and S. Schulz. 1991. Anthraquinones in different developmental stages of Galeruca
tanaceti (Coleoptera, Chrysomelidae). Journal of Chemical Ecology 17:2323–2332.
284
Hilker, M., and S. Schulz. 1994. Composition of larval secretion of Chrysomela lapponica
285
(Coleoptera, Chrysomelidae) and its dependence on host plant. Journal of Chemical
286
Ecology 20:1075–1093.
287
Howard, D. F., M. S. Blum, T. H. Jones, and D. W. Phillips. 1982. Defensive adaptations of eggs
288
and adults of Gastrophysa cyanea (Coleoptera: Chrysomelidae). Journal of Chemical
289
Ecology 8:453–462.
290
Hristov, N., and W. E. Conner. 2005. Effectiveness of tiger moth (Lepidoptera, Arctiidae)
291
chemical defenses against an insectivorous bat (Eptesicus fuscus). Chemoecology
292
15:105–113.
293
294
295
Isman, M. B. 1977. Dietary influence of cardenolides on larval growth and development of
milkweed bug Oncopeltus fasciatus. Journal of Insect Physiology 23:1183–1187.
Järvi, T., B. Sillén-Tullberg, and C. Wiklund. 1981. The cost of being aposematic. An
296
experimental study of predation on larvae of Papilio machaon by the great tit Parus
297
major. Oikos 36:267–272.
298
Jones, C. G., D. W. Whitman, S. J. Compton, P. J. Silk, and M. S. Blum. 1989. Reduction in diet
299
breadth results in sequestration of plant chemicals and increases efficacy of chemical
300
defense in a generalist grasshopper. Journal of Chemical Ecology 15:1811–1822.
301
Kearsley, M. J. C., and T. G. Whitham. 1992. Guns and butter: a no cost defense against
302
303
predation for Chrysomela confluens. Oecologia 92:556–562.
Köpf, A., N. E. Rank, H. Roininen, and J. Tahvanainen. 1997. Defensive larval secretions of leaf
304
beetles attract a specialist predator Parasyrphus nigritarsis. Ecological Entomology
305
22:176–183.
13
306
307
308
309
310
Kos, M., et al. 2012. Herbivore-mediated effects of glucosinolates on different natural enemies of
a specialist aphid. Journal of Chemical Ecology 38:100–115.
Krall, B. S., R. J. Bartelt, C. J. Lewis, and D. W. Whitman. 1999. Chemical defense in the stink
bug Cosmopepla bimaculata. Journal of Chemical Ecology 25:2477–2494.
Krall, B. S., B. W. Zilkowski, S. L. Kight, R. J. Bartelt, and D. W. Whitman. 1997. Chemistry
311
and defensive efficacy of secretion of burrowing bug (Sehirus cinctus cinctus). Journal of
312
Chemical Ecology 23:1951–1962.
313
Kumar, P., S. S. Pandit, A. Steppuhn, and I. T. Baldwin. 2014b. Natural history-driven, plant-
314
mediated RNAi-based study reveals CYP6B46's role in a nicotine-mediated antipredator
315
herbivore defense. Proceedings of the National Academy of Sciences 111:1245–1252.
316
Kumar, P., P. Rathi, M. Schöttner, I. T. Baldwin, and S. Pandit. 2014a. Differences in nicotine
317
metabolism of two Nicotiana attenuata herbivores render them differentially susceptible
318
to a common native predator. PLoS ONE 9:e95982.
319
Larsson, S., C. Björkman, and R. Gref. 1986. Responses of Neodiprion sertifer (Hym.,
320
Diprionidae) larvae to variation in needle resin acid concentration in Scots pine.
321
Oecologia 70:77–84.
322
323
324
Le Guigo, P., Y. Qu, and J. Le Corff. 2011. Plant-mediated effects on a toxin-sequestering aphid
and its endoparasitoid. Basic and Applied Ecology 12:72–79.
Lindstedt, C., H. Huttunen, M. Kakko, and J. Mappes. 2011. Disengtangling the evolution of
325
weak warning signals: high detection risk and low production costs of chemical defences
326
in gregarious pine sawfly larvae. Evolutionary Ecology 25:1029–1046.
327
Lindstedt, C., J. Mappes, J. Paivinen, and M. Varama. 2006. Effects of group size and pine
328
defence chemicals on diprionid sawfly survival against ant predation. Oecologia 150:519–
329
526.
14
330
Lymbery, A., and W. Bailey. 1980. Regurgitation as a possible anti-predator defensive
331
mechanism in the grasshopper Goniaea sp. (Acrididae, Orthoptera). Journal of the
332
Australian Entomological Society 19:129–130.
333
334
Malcolm, S. B. 1986. Aposematism in a soft-bodied insect: a case for kin selection. Behavioral
Ecology and Sociobiology 18:387–393.
335
Malcolm, S. B. 1989. Disruption of web structure and predatory behavior of a spider by plant-
336
derived chemical defenses of an aposematic aphid. Journal of Chemical Ecology
337
15:1699–1716.
338
Mason, P. A., M. A. Bernardo, and M. S. Singer. 2014. A mixed diet of toxic plants enables
339
increased feeding and anti-predator defense by an insect herbivore. Oecologia 176:477–
340
486.
341
342
Masters, A. R. 1990. Pyrrolizidine alkaloids in artificial nectar protect adult ithomiine butterflies
from a spider predator. Biotropica 22:298–304.
343
Mattiacci, L., S. B. Vinson, H. J. Williams, J. R. Aldrich, and F. Bin. 1993. A long-range
344
attractant kairomone for egg parasitoid Trissolcus basalis, isolated from defensive
345
secretion of its host, Nezara viridula. Journal of Chemical Ecology 19:1167–1181.
346
McIver, J. D., and J. D. Lattin. 1990. Evidence for aposematism in the plant bug Lopidea
347
nigridea Uhler (Hemiptera: Miridae: Orthotylinae). Biological Journal of the Linnean
348
Society 40:99–112.
349
McLain, D. K. 1984. Coevolution: Müllerian mimicry between a plant bug (Miridae) and a seed
350
bug (Lygaeidae) and the relationship between host plant choice and unpalatability. Oikos
351
43:143–148.
352
353
McLain, D. K., and D. J. Shure. 1985. Host plant toxins and unpalatability of Neacoryphus
bicrucis (Hemiptera: Lygaeidae). Ecological Entomology 10:291–298.
15
354
Montgomery, B. R., and G. S. Wheeler. 2000. Antipredatory activity of the weevil Oxyops
355
vitiosa: a biological control agent of Melaleuca quinquenervia. Journal of Insect Behavior
356
13:915–926.
357
Montllor, C. B., E. A. Bernays, and R. V. Barbehenn. 1990. Importance of quinolizidine alkaloids
358
in the relationship between larvae of Uresiphita reversalis (Lepidoptera: Pyralidae) and a
359
host plant, Genista monspessulana. Journal of Chemical Ecology 16:1853–1865.
360
Montllor, C. B., E. A. Bernays, and M. L. Cornelius. 1991. Responses of two hymenopteran
361
predators to surface chemistry of their prey: significance for an alkaloid-sequestering
362
caterpillar. Journal of Chemical Ecology 17:391–399.
363
Morais, A. B. B., K. S. Brown, M. A. Stanton, K. F. Massuda, and J. R. Trigo. 2013. Are
364
aristolochic acids responsible for the chemical defence of aposematic larvae of Battus
365
polydamas (L.) (Lepidoptera: Papilionidae)? Neotropical Entomology 42:558–564.
366
367
368
369
370
Morrow, P. A., T. E. Bellas, and T. Eisner. 1976. Eucalyptus oils in defensive oral discharge of
australian sawfly larvae (Hymenoptera: Pergidae). Oecologia 24:193–206.
Morton, T. C., and F. V. Vencl. 1998. Larval beetles form a defense from recycled host-plant
chemicals discharged as fecal wastes. Journal of Chemical Ecology 24:765–785.
Murphy, S. M., S. M. Leahy, L. S. Williams, and J. T. Lill. 2010. Stinging spines protect slug
371
caterpillars (Limacodidae) from multiple generalist predators. Behavioral Ecology
372
21:153–160.
373
Müller, C., and P. M. Brakefield. 2003. Analysis of a chemical defense in sawfly larvae: easy
374
bleeding targets predatory wasps in late summer. Journal of Chemical Ecology 29:2683–
375
2694.
376
Müller, C., and M. Hilker. 1999. Unexpected reactions of a generalist predator towards defensive
377
devices of cassidine larvae (Coleoptera, Chrysomelidae). Oecologia 118:166–172.
16
378
Narberhaus, I., V. Zintgraf, and S. Dobler. 2005. Pyrrolizidine alkaloids on three trophic levels -
379
evidence for toxic and deterrent effects on phytophages and predators. Chemoecology
380
15:121–125.
381
Newcombe, D., J. D. Blount, C. Mitchell, and A. J. Moore. 2013. Chemical egg defence in the
382
large milkweed bug, Oncopeltus fasciatus, derives from maternal but not paternal diet.
383
Entomologia Experimentalis et Applicata 149:197–205.
384
Nogueira-de-Sá, F., and J. R. Trigo. 2002. Do fecal shields provide physical protection to larvae
385
of the tortoise beetles Plagiometriona flavescens and Stolas chalybea against natural
386
enemies? Entomologia Experimentalis et Applicata 104:203–206.
387
Nogueira-de-Sá, F., and J. R. Trigo. 2005. Faecal shield of the tortoise beetle Plagiometriona aff.
388
flavescens (Chrysomelidae: Cassidinae) as chemically mediated defence against
389
predators. Journal of Tropical Ecology 21:189–194.
390
Nowbahari, B., and E. Thibout. 1992. Defensive role of Allium sulfur compounds for leek moth
391
Acrolepiopsis assectella Z. (Lepidoptera) against generalist predators. Journal of
392
Chemical Ecology 18:1991–2002.
393
Oberhauser, K., I. Gebhard, C. Cameron, and S. Oberhauser. 2007. Parasitism of monarch
394
butterflies (Danaus plexippus) by Lespesia archippivora (Diptera: Tachinidae). American
395
Midland Naturalist 157:312–328.
396
Opitz, S. E. W., S. R. Jensen, and C. Müller. 2010. Sequestration of glucosinolates and iridoid
397
glucosides in sawfly species of the genus Athalia and their role in defense against ants.
398
Journal of Chemical Ecology 36:148–157.
399
400
Orr, A. G., J. R. Trigo, L. Witte, and T. Hartmann. 1996. Sequestration of pyrrolizidine alkaloids
by larvae of Tellervo zoilus (Lepidoptera: Ithomiinae) and their role in the chemical
17
401
protection of adults against the spider Nephila maculata (Araneidae). Chemoecology
402
7:68–73.
403
Paradise, C. J., and N. E. Stamp. 1991. Prey recognition time of praying mantids (Dictyoptera:
404
Mantidae) and consequent survivorship of unpalatable prey (Hemiptera: Lygaeidae).
405
Journal of Insect Behavior 4:265–273.
406
Pavis, C., C. Malosse, P. H. Ducrot, F. Howse, K. Jaffe, and C. Descoins. 1992. Defensive
407
secretion of first-instar larvae of rootstalk borer weevil, Diaprepes abbreviatus L.
408
(Coleoptera: Curculionidae), to the fire-ant Solenopsis geminata (F.) (Hymenoptera:
409
Formicidae). Journal of Chemical Ecology 18:2055–2068.
410
Peterson, S. C., N. D. Johnson, and J. L. LeGuyader. 1987. Defensive regurgitation of
411
allelochemicals derived from host cyanogenesis by eastern tent caterpillars. Ecology
412
68:1268–1272.
413
414
415
Petre, C.-A., C. Detrain, and J.-L. Boevé. 2007. Anti-predator defence mechanisms in sawfly
larvae of Arge (Hymenoptera, Argidae). Journal of Insect Physiology 53:668–675.
Pinto, C. F., A. Urzúa, and H. M. Niemeyer. 2011. Sequestration of aristolochic acids from
416
meridic diets by larvae of Battus polydamas archidamas (Papilionidae: Troidini).
417
European Journal of Entomology 108:41–45.
418
Pratt, C., T. W. Pope, G. Powell, and J. T. Rossiter. 2008. Accumulation of glucosinolates by the
419
cabbage aphid Brevicoryne brassicae as a defense against two coccinellid species. Journal
420
of Chemical Ecology 34:323–329.
421
Prieto, J. M., U. Schaffner, A. Barker, A. Braca, T. Siciliano, and J.-L. Boevé. 2007.
422
Sequestration of furostanol saponins by Monophadnus sawfly larvae. Journal of Chemical
423
Ecology 33:513–524.
18
424
Rafter, J. L., A. A. Agrawal, and E. L. Preisser. 2013. Chinese mantids gut toxic monarch
425
caterpillars: avoidance of prey defence? Ecological Entomology 38:76–82.
426
427
428
429
430
Rank, N. E. 1994. Host-plant effects on larval survival of a salicin-using leaf beetle Chrysomela
aeneicollis Schaeffer (Coleoptera: Chrysomelidae). Oecologia 97:342–353.
Rank, N. E., A. Köpf, R. Julkunen-Tiitto, and J. Tahvanainen. 1998. Host preference and larval
performance of the salicylate-using leaf beetle Phratora vitellinae. Ecology 79:618–631.
Rank, N. E., and J. T. Smiley. 1994. Host-plant effects on Parasyrphus melanderi (Diptera:
431
Syrphidae) feeding on a willow leaf beetle Chrysomela aeneicollis (Coleoptera:
432
Chrysomelidae). Ecological Entomology 19:31–38.
433
Rayor, L. S. 2004. Effects of monarch larval host plant chemistry and body size on Polistes wasp
434
predation. Pages 39–46 in K. Oberhauser, and M. Solensky, editors. The monarch
435
butterfly: biology and conservation. Cornell University Press, Ithaka, New York, USA.
436
Rayor, L. S., L. J. Mooney, and J. A. Renwick. 2007. Predatory behavior of Polistes dominulus
437
wasps in response to cardenolides and glucosinolates in Pieris napi caterpillars. Journal of
438
Chemical Ecology 33:1177–1185.
439
Rayor, L. S., and S. Munson. 2002. Larval feeding experience influences adult predator
440
acceptance of chemically defended prey. Entomologia Experimentalis et Applicata
441
104:193–201.
442
443
Remold, H. 1963. Scent-glands of land-bugs, their physiology and biological function. Nature
198:764–768.
444
Richards, L. A., E. C. Lampert, M. D. Bowers, C. D. Dodson, A. M. Smilanich, and L. A. Dyer.
445
2012. Synergistic effects of iridoid glycosides on the survival, development and immune
446
response of a specialist caterpillar, Junonia coenia (Nymphalidae). Journal of Chemical
447
Ecology 38:1276–1284.
19
448
449
450
451
452
453
454
455
456
457
458
Ritland, D. B. 1991. Unpalatability of viceroy butterflies (Limenitis archippus) and their
purported mimicry models, Florida queens (Danaus gilippus). Oecologia 88:102–108.
Ritland, D. B. 1994. Variation in palatability of queen butterflies (Danaus gilippus) and
implications regarding mimicry. Ecology 75:732–746.
Ritland, D. B. 1995. Comparative unpalatability of mimetic viceroy butterflies (Limenitis
archippus) from four south-eastern United States populations. Oecologia 103:327–336.
Rostás, M., and K. Blassmann. 2009. Insects had it first: surfactants as a defence against
predators. Proceedings of the Royal Society B 276:633–638.
Rowell-Rahier, M., and J. M. Pasteels. 1986. Economics of chemical defense in Chrysomelinae.
Journal of Chemical Ecology 12:1189–1203.
Rowell-Rrahier, M., J. M. Pasteels, A. Alonso-Mejia, and L. P. Brower. 1995. Relative
459
unpalatability of leaf beetles with either biosynthesized or sequestered chemical defense.
460
Animal Behaviour 49:709–714.
461
Saastamoinen, M., S. van Nouhuys, M. Nieminen, B. O'Hara, and J. Suomi. 2007. Development
462
and survival of a specialist herbivore, Melitaea cinxia, on host plants producing high and
463
low concentrations of iridoid glycosides. Annales Zoologici Fennici 44:70–80.
464
Schaffner, U., J.-L. Boevé, H. Gfeller, and U. P. Schlunegger. 1994. Sequestration of Veratrum
465
alkaloids by specialist Rhadinoceraea nodicornis Konow (Hymenoptera, Tenthredinidae)
466
and its ecoethological implications. Journal of Chemical Ecology 20:3233–3250.
467
Schaffner, U., and C. Müller. 2001. Exploitation of the fecal shield of the lily leaf beetle,
468
Lilioceris lilii (Coleoptera: Chrysomelidae), by the specialist parasitoid Lemophagus
469
pulcher (Hymenoptera: Ichneumonidae). Journal of Insect Behavior 14:739–757.
470
471
Sexton, O. J. 1964. Differential predation by the lizard, Anolis carolinensis, upon unicoloured
and polycoloured insects after interval of no contact. Animal Behaviour 12 :101–110.
20
472
Sillén-Tullberg, B., C. Wiklund, and T. Järvi. 1982. Aposematic coloration in adults and larvae of
473
Lygaeus equestris and its bearing on Müllerian mimicry: an experimental study on
474
predation on living bugs by the great tit Parus major. Oikos 39:131–136.
475
476
477
478
479
Sime, K. 2002. Chemical defence of Battus philenor larvae against attack by the parasitoid
Trogus pennator. Ecological Entomology 27:337–345.
Slobodchikoff, C. N. 1987. Aversive conditioning in a model-mimic system. Animal Behaviour
35:75–80.
Smedley, S. R., K. A. Lafleur, L. K. Gibbons, J. E. Arce, J. T. Brown, and M. L. Lozier. 2002.
480
Glandular hairs: pupal chemical defense in a non-native ladybird beetle (Coleoptera:
481
Coccinellidae). Northeastern Naturalist 9:253–266.
482
Smilanich, A. M., L. A. Dyer, J. Q. Chambers, and M. D. Bowers. 2009. Immunological cost of
483
chemical defence and the evolution of herbivore diet breadth. Ecology Letters 12:612–
484
621.
485
486
487
488
489
490
491
492
Stamp, N. E. 2001. Effects of prey quantity and quality on predatory wasps. Ecological
Entomology 26:292–301.
Stamp, N. E., and B. Meyerhoefer. 2004. Effects of prey quality on social wasps when given a
choice of prey. Entomologia Experimentalis et Applicata 110:45–51.
Staples, J. K., B. S. Krall, R. J. Bartelt, and D. W. Whitman. 2002. Chemical defense in the plant
bug Lopidea robiniae (Uhler). Journal of Chemical Ecology 28:601–615.
Strohmeyer, H. H., N. E. Stamp, C. M. Jarzomski, and M. D. Bowers. 1998. Prey species and
prey diet affect growth of invertebrate predators. Ecological Entomology 23:68–79.
493
Sugeno, W., and K. Matsuda. 2002. Adult secretions of four Japanese Chrysomelinae
494
(Coleoptera: Chrysomelidae). Applied Entomology and Zoology 37:191–197.
495
Sword, G. A. 1999. Density-dependent warning coloration. Nature 397:217.
21
496
Sword, G. A. 2001. Tasty on the outside, but toxic in the middle: grasshopper regurgitation and
497
host plant-mediated toxicity to a vertebrate predator. Oecologia 128:416–421.
498
Tallamy, D. W., and P. M. Gorski. 1997. Long- and short-term effect of cucurbitacin
499
consumption on Acalymma vittatum (Coleoptera: Chrysomelidae) fitness. Environmental
500
Entomology 26:672–677.
501
Tesařova, M., Z. Fric, P. Veselý, M. Konvička, and R. Fuchs. 2013. European checkerspots
502
(Melitaeini: Lepidoptera, Nymphalidae) are not aposematic—the point of view of great
503
tits (Parus major). Ecological Entomology 38:155–163.
504
Theodoratus, D. H., and M. D. Bowers. 1999. Effects of sequestered iridoid glycosides on prey
505
choice of the prairie wolf spider, Lycosa carolinensis. Journal of Chemical Ecology
506
25:283–295.
507
508
509
Traugott, M. S., and N. E. Stamp. 1996. Effects of chlorogenic acid- and tomatine-fed caterpillars
on the behavior of an insect predator. Journal of Insect Behavior 9:461–476.
Trigo, J. R., K. S. Brown, L. Witte, T. Hartmann, L. Ernst, and L. E. S. Barata. 1996.
510
Pyrrolizidine alkaloids: different acquisition and use patterns in Apocynaceae and
511
Solanaceae feeding ithomiine butterflies (Lepidoptera: Nymphalidae). Biological Journal
512
of the Linnean Society 58:99–123.
513
Uésugi, K. 1996. The adaptive significance of Batesian mimicry in the swallowtail butterfly,
514
Papilio polytes (Insecta, Papilionidae): associative learning in a predator. Ethology
515
102:762–775.
516
Vasconcellos-Neto, J., and T. M. Lewinsohn. 1984. Discrimination and release of unpalatable
517
butterflies by Nephila clavipes, a Neotropical orb-weaving spider. Ecological Entomology
518
9:337–344.
22
519
Vencl, F. V., N. E. Gómez, K. Ploss, and W. Boland. 2009. The chlorophyll catabolite,
520
pheophorbide a, confers predation resistance in a larval tortoise beetle shield defense.
521
Journal of Chemical Ecology 35:281–288.
522
523
524
525
Vencl, F. V., and T. C. Morton. 1998. The shield defense of the sumac flea beetle, Blepharida
rhois (Chrysomelidae: Alticinae). Chemoecology 8:25–32.
Vencl, F. V., T. C. Morton, R. O. Mumma, and J. C. Schultz. 1999. Shield defense of a larval
tortoise beetle. Journal of Chemical Ecology 25:549–566.
526
Vencl, F. V., F. Nogueira-de-Sá, B. J. Allen, D. M. Windsor, and D. J. Futuyma. 2005. Dietary
527
specialization influences the efficacy of larval tortoise beetle shield defenses. Oecologia
528
145:404–414.
529
Vlieger, L., P. M. Brakefield, and C. Müller. 2004. Effectiveness of the defence mechanism of
530
the turnip sawfly, Athalia rosae (Hymenoptera: Tenthredinidae), against predation by
531
lizards. Bulletin of Entomological Research 94:283–289.
532
Wheeler, G. S., L. M. Massey, and I. A. Southwell. 2002. Antipredator defense of biological
533
control agent Oxyops vitiosa is mediated by plant volatiles sequestered from the host plant
534
Melaleuca quinquenervia. Journal of Chemical Ecology 28:297–315.
535
Whelan, C. J., R. T. Holmes, and H. R. Smith. 1989. Bird predation on gypsy moth (Lepidoptera:
536
Lymantriidae) larvae: an aviary study. Environmental Entomology 18:43–45.
537
Whitman, D. W., M. S. Blum, and C. G. Jones. 1985. Chemical defense in Taeniopoda eques
538
(Orthoptera: Acrididae): role of the metathoracic secretion. Annals of the Entomological
539
Society of America 78:451–455.
540
Whitman, D. W., M. S. Blum, and C. G. Jones. 1986. Olfactorily mediated attack suppression in
541
the southern grasshopper mouse toward an unpalatable prey. Behavioural Processes
542
13:77–83.
23
543
Wiklund, C., and T. Järvi. 1982. Survival of distasteful insects after being attacked by naive
544
birds: a reappraisal of the theory of aposematic coloration evolving through individual
545
selection. Evolution 36:998–1002.
546
Wiklund, C., and B. Sillén-Tullberg. 1985. Why distasteful butterflies have aposematic larvae
547
and adults, but cryptic pupae: evidence from predation experiments on the monarch and
548
the European swallowtail. Evolution 39:1155–1158.
549
550
551
Yosef, R., J. E. Carrel, and T. Eisner. 1996. Contrasting reactions of loggerhead shrikes to two
types of chemically defended insect prey. Journal of Chemical Ecology 22:173–181.
Yosef, R., and D. W. Whitman. 1992. Predator exaptations and defensive adaptations in
552
evolutionary balance: no defense is perfect. Evolutionary Ecology 6:527–536.
553
Zvereva, E. L., M. V. Kozlov, and M. Hilker. 2010a. Evolutionary variations on a theme: host
554
plant specialization in five geographical populations of the leaf beetle Chrysomela
555
lapponica. Population Ecology 52:389–396.
556
Zvereva, E. L., M. V. Kozlov, and S. Neuvonen. 1995. Decrease in feeding niche breadth of
557
Melasoma lapponica (Coleoptera: Chrysomelidae) with increase in pollution. Oecologia
558
104:323–329.
559
Zvereva, E. L., O. Y. Kruglova, and M. V. Kozlov. 2010b. Drivers of host plant shifts in the leaf
560
beetle Chrysomela lapponica: natural enemies or competition? Ecological Entomology
561
35:611–622.
562
563
564
Zvereva, E. L., and N. E. Rank. 2003. Host plant effects on parasitoid attack on the leaf beetle
Chrysomela lapponica. Oecologia 135:258–267.
Zvereva, E. L., and N. E. Rank. 2004. Fly parasitoid Megaselia opacicornis uses defensive
565
secretions of the leaf beetle Chrysomela lapponica to locate its host. Oecologia 140:516–
566
522.
24
Related documents