Download ADVANCED ALGEBRA AND TRIG

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Perceived visual angle wikipedia , lookup

Trigonometric functions wikipedia , lookup

Transcript
INTEGRATED TRIGONOMETRY
FALL SEMESTER EXAM REVIEW #3
NAME_______________________________PERIOD____________DATE_____________
Find each power. Express the result in rectangular form.
 

 
1. 3  cos  i sin  
6
6 
 
3
 

 
2.  2  cos  i sin  
4
4 
 
1.____________
5
Solve each triangle. Round to the nearest tenth.
3. b  7, c  10, A  51
2.____________
3.a=___________
B=___________
C=___________
4. a  16, c  12, B  63
4.b=___________
A=___________
C=___________
5. 4. C  79.3 , a  21.5, b  13
5.c=___________
A=___________
B=___________
Find the area of each triangle. Round to the nearest tenth.
6. a  4, b  6, c  8
6.____________
7. a  17, b  13, c  19
7.____________
8. The longest truck-mounted ladder used by the Dallas Fire Department is 108 feet long and
consists of four hydraulic sections. Gerald Travis, aerial expert for the department, indicates
that the optimum operating angle of this ladder is 60 . The fire fighters find they need to
reach the roof of an 84-foot burning building. Assume the ladder is mounted 8 feet above the
ground.
a. Draw a labeled diagram of the situation.
b. How far from the building should the base of the ladder be placed to achieve the optimum
operating angle?
8b.____________
c. How far should the ladder be extended to reach the roof?
8c.____________
9. When a 757 passenger jet begins its descent to the Ronald Reagan International Airport in
Washington, D.C., it is 3900 feet from the ground. Its angle of descent is 6 .
a. What is the plane’s ground distance to the airport?
9a.____________
b. How far must the plane fly to reach the runway?
9b.____________
Simplify the expression.
10. cos x csc x tan x
10.____________
Use the unit circle to find each value.
11.____________
12.____________
11. sin 90
12. tan 360
13. cot(180)
13.____________
14. csc 270
15. cos(270)
16. sec180
14.____________
15.____________
16.____________
Find the values of sine, cosine, and tangent for each A .
17.
B
80
A
60
C
17.
Sin=____________
Cos=____________
Tan=____________
Find the values of the six trigonometric functions for angle  in standard position if a point
with the given coordinates lies on its terminal side.
18. ( 4, 3)
18.
Sin=____________
Cos=____________
Tan=____________
Csc=____________
Sec=____________
Cot=____________
Solve each equation if 0  x  360
19. sin x  1
20. tan x   3
19.____________
20.____________
Find each value.
21. sin 1 0
22. Arc cos 0
23. Tan 1
3
3
21.____________
22.____________
Change each degree measure to radian measure in terms  .
24. 137
25. 210
26. 300
23.____________
24.____________
25.____________
26.____________
Change each radian measure to degree measure. Round to the nearest tenth.
27.
7
12
28.
11
3
29. 17
27.____________
28.____________
29.____________