Download Chapters 8-9

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Math 125 Practice Test #3 (Chapter 8 and Chapter 9)
1.
2.
Evaluate the following radicals with real numbers, if possible.
a) 3 64
b)  16
c) 5  32
d)
b)
 54a8b5
3
Evaluate the given expressions.
5
a)  16 4
4.
81
Simplify the following radicals, if possible. Assume all variables represent positive
real numbers.
a)  75k 7 q10
3.
4
b)
 216 

2
3
Use properties of exponents and simplify the expression. Express your answers with
positive exponents.
1
1
4
a)  3 x x
2
3
(2 x 5 ) 4
b)
x
3
10
4
 m 2 / 3 
c)  3 / 4  m 3 / 8 a 1 / 4
a



2



5.
Find the distance and midpoint between the two points  4 3 , 2 5 and 2 3 ,10 5
6.
Add or subtract.
a) 4 3 54 x 5  5x 3 16 x 2
7.
Multiply.
a)
8.
a 2

2
b)
45x3  18x 2  50 x 2  20 x3
2
3 6

34 6

Rationalize the denominators.
a)
9.
3
b)

3
5 18
3 12
b)
3
3x
4y
4
Solve each equation.
2x  3  3  x
a)
c)
3
11  5
b)
x 
d)
x  4
x  2
x5  5
10.
Perform each operation and express the result in the standard form of a complex number.
 5i
a) 8  4i 7  2i 
b)
2  4i
11.
Multiply.
12.
Solve using the square root property.
a) a 2  40
2 6
b) ( x  3)2  49
13.
14.
15.
16.
Solve by completing the square.
a) x 2  6 x  11  0
b) 2 x 2  5 x  1  0
Solve by using the quadratic formula.
a) 2 x 2  6 x  1
b) 9a 2  4  2a
Solve by factoring.
 2 x  3
x
a) x 2  3 x  18
b)
Solve the given equations.
a) 4 x 2  25  0
b) x 4  6 x 2  8  0
c) 2 x  5 x  2  0
d) x 3  6 x 3  5
2
2
1
17.
Find the discriminant and determine the number and type of solution of the quadratic equation.
a) 9 x 2  42 x  49  0
b) 8 x 2  18 x  5
18.
Solve the inequality, graph and write your answer in interval notation.
a) x 2  3x  10  0
b) x7 x  40 < 12
c)
3x  1
0
x2
d)
x2
 2
x
19.
At a point 16 feet from the base of a tree, the distance to the top of the tree is 4 feet more
than the height h of the tree. Find the height of the tree.
20.
Graph the given quadratic functions. Find the vertex, the x and y-intercepts, and the axis
of symmetry and label them. Which way does the parabola open?
a) f ( x)  2( x  1)2
b) g ( x)   x 2  5
c)
h( x )  2 x 2  8 x  9
21.
Graph the given quadratic functions by completing the square first and then finding other
key points.
a) f ( x)  x 2  2 x  8
b) h( x)   x 2  6 x  9
22.
If an object is thrown upward with an initial velocity of 384 ft/second, then its height y
after t seconds is given by the equation y  384t  32t 2 .
a) Find the maximum height attained by the object.
b) Find the number of seconds it takes the object to hit the ground.
__________________________________________________________________________________
Answer key is on the next page.
Answer Key:
1.
a) 4
2.
a) 5k 3 q 5
3.
a) 32
4.
a) 3x12
5.
Distance = 2 107 ; Midpoint =  3, 6 5
6.
a) 22 x
7.
a) 9a  12 a  4
8.
5 6
a)
6
9.
a) x  2
10.
a) 48  44i
11.
2 3
12.
a) a   2i 10
b) x   4, 10
13.
a) x  3  i 2
b) x 
5  33
4
14.
a) x 
3 7
2
b) a 
1  i 35
9
15.
a) x   6,3
3k
b)
1
36
1
b) 16x 2
c)

3
2x 2
5
a) x   i
2
1
c) x  , 4
4
d) 3
b) 3a 2b 3 2a 2b2
11
16.
c) 2
b) Not a real number
a5/ 2
m 23 / 12

b) x 5 x  2 x 2
b) 30  27 2
3
b)
6 xy 2
2 y2
c)
11  5
2
b) x  4
1
b) 1  i
2
b) x  1,
9
4
b) x   2, x   2
d) x  1, x 125
d)
x 2
17.
a) D  0 so 1 real solution
18.
a) (, 5]  [2, )
c)
19.
 , 2   
1 
,
3 
b) D  484  0 so 2 real solutions
2

b)  6, 
7

 2 
d)   , 0 
 3 
By the Pythagorean theorem: h2  162  (h  4)2  The height of the tree is 30 feet.
20 a). Vertex: (1, 0) ; x-intercept: (1, 0) ; y-intercept: (0, 2); Axis of symmetry: x  1 ; opens up
20 b). Vertex: (0,5)
x-intercept: (  5, 0)
y-intercept: (0, 5)
Axis of symmetry: x  0
opens down
20 c). Vertex: (2,1)
x-intercept: None
y-intercept: (0, 9)
Axis of symmetry: x  2
opens up
21 a).
f ( x)  ( x  1)2  9 ;
Vertex: (1, 9)
f (0)  8 i.e. (0, 8) is the y-intercept
f (4)  0 and f (2)  0 i.e.
(4, 0) and ( 2, 0) are the x-intercepts
f (2)  8 ;
Axis x  1
21 b).
f ( x)  ( x  3)2  18 ; Vertex: (3,18)
f (0)  9 i.e. (0,9) is the y-intercept
(3  3 2, 0) are the x-intercepts, but they are not useful for graphing
f (6)  9 ;
Axis x  3
22 a). The maximum height attained by the object is 1152 feet.
22 b). It takes the object 12 seconds to hit the ground.
Related documents