Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
PRE-AP PRECALCULUS Fundamental Trigonometric Identities Reciprocal Identities: Quotient Identities: sin u 1 csc u cos u 1 sec u tan u 1 cot u tan u sin u , cos u 0 cos u csc u 1 sin u sec u 1 cos u cot u 1 tan u cot u cos u , sin u 0 sin u Pythagorean Identities: sin 2 u c o s2 u 1 1 tan 2 u sec2 u 1 cot 2 u csc2 u Odd/Even Identities: sin(u ) sin(u ) csc(u ) csc(u ) cos(u ) cos(u ) tan(u ) tan(u ) cot(u ) cot(u ) sec(u ) sec(u ) Cofunction Identities: sin u cos u 2 tan u cot u 2 cos u sin u 2 cot u tan u 2 sec u csc u 2 csc u sec u 2 1 Notes on Fundamental Trig Identities Pythagorean Identities: sin 2 cos 2 1 1 tan 2 sec 2 1 cot 2 csc 2 Use the fundamental identities to reduce as much as possible. 1. sinx cscx = 4. sin 2 x cos 2 x sin x cos x 7. cscx – cosx cotx 10. Rewrite 2. sin x cos x tan x 3. tanx cscx cosx = 5. 1 cos 2 x sin x 6. sin( x ) cos( x ) 8. 1 1 1 sin x 1 sin x 9. sin x cos x 1 cos x sin x 1 so that it is not in fractional form. 1 sin x 11. Rewrite cos 2 x so that it is not in fractional form. 1 sin x 2 Assignment: Trigonometric Identities I. Simplify the following. Show all work on your own paper as needed. 1. (1 cos )(1 cos ) 2. sin x cot x 3. (sin 1)(sin 1) 4. 1 tan 2 5. tan 2 x sec2 x 6. sec x cot x sin x 7. 1 cot 2 A 8. 10. 1 sin 2 A tan 2 A 13. cos x(sec x cos x) 11. sin 2 a 1 cos a 9. 1 1 2 cos A cot 2 A 14. cos2 A(sec2 A 1) sec 2 x tan 2 x csc x 12. csc2 x(1 cos 2 x) 15. (sec B tan B)(sec B tan B) 17. tan x cot x sec 2 x 18. (sin x cos x)2 (sin x cos x)2 19. (sec2 x 1)(csc2 x 1) 20. cot 2 x sin x csc x 1 csc x 21. 22. cos3 y cos y sin 2 y 23. sec y csc y 1 tan y 24. (csc A 1)(csc A 1) 25. sin cot cos 26. 2cos2 θ – sin2 θ + 1 16. 28. sin x cos x 1 cos 2 x cos x 1 sin x 1 sin x cos x *29. Rewrite 27. tan 2 x 1 sec x 1 sec x sin x sin x cos x 5 so that it is not in fractional form. tan x sec x 3 Assignment: Trigonometric Identities Simplify. Show all work on your own paper. 1. sin(-x) 2. cos(-x) 3. tan(-x) 7. tanx (sinx + cosx cotx) 10. csc 2 x 1 cot 2 x 4. csc(-x) 5. sec(-x) 6. cot(-x) 8. (1+ tan2x)(1-sin2x) 11. sec 2 x tan 2 x csc x 9. cotx secx 12. 1 1 + 2 sec x csc 2 x 13. tan2 θ - sec2θ 14. sec2 θ (1 – sin2 θ) 15. 2cos2 θ – sin2 θ + 1 cos 2 sin 2 1 16. cos sec cot 17. + tan csc 1 18. 20. sin x tan x cos x 20. sec x sin x tan x 22 sec x tan x sec x tan x 23. sec x cos x sin 2 x sec x 19. tan 2 x 1 tan x csc 2 x 21. cos xtan x cos x 24. sin tan 1 sec 25. cos 2 x + sin x 27. sin x sec tan – cos cot sec x sin x tan x cot x 26. 2 cot 2 –1 csc 2 1 tan 2 x 28. 1 cot 2 x sin 2 x 29. + cos x cos x 31. (cos2θ)(sec2θ–1) 32. sinθ (cscθ – sinθ) 33. (1 – sin2θ)(1 + tan2θ) 34. secθ – (tanθ sinθ) 35. cos(sec – cos) 36. csc2x (1 – cos2x) 37. tan csc 38. cot2 - (cos4 csc4) 30. 1 cot 2 x 1 cos 2 x 4 Notes on Verifying Trig Identities Guidelines: 1. 2. 3. 4. 5. 6. Work with one side at a time – usually the most complicated side Tools to consider: Factoring, adding fractions, squaring binomials May need to transform the denominator so…transform it to a monomial Use the fundamental identities Try converting all terms to sines and cosines Always try something! Verify the identity: 1. sin 2 x cos 2 x 1 cos 2 x sec 2 x 2. 1 1 2 csc 2 x 1 cos x 1 cos x 3. (sec2x – 1) (sin2x – 1) = - sin2x 4. cscx – sinx = cosx cotx sin x 5. cscx + cotx = 1 cos x tan 2 x 1 cos x 6. 1 sec x cos x 7. tan3x = tanx sec2x – tanx 8. cos3x sin4x = (sin4x – sin6x) cosx 5 Assignment: Simplifying and Verifying Identities Simplify each of the following to sin(x), cos(x), tan(x), or 1 1. 1 1 2 sec x csc 2 x 2. sec x tan x cot x 3. 5. (1 + tan2x)(1 – sin2x) 1 tan x 1 cot x 4. sinxsecx 6. secx – sinxtanx Verify each identity. Work with one side only. Use separate paper as necessary. 1. sinx + cosxcotx = cscx 2. cosx cscx = cotx 4. sinx(secx – cscx) = tanx – 1 7. 10. sin x cot x cos x 2 cot x sin x sec x = sinx tan x cot x 13. cos x sin x2 (cosx sin x)2 2 3. 2cos2x – sin2x + 1 = 3cos2x 5. 1 1 2 sec 2 x 1 sin x 1 sin x 6. sin 2 x cos x 1 1 cos x 8. sin x cos x 1 2 1 2 sin x cot x tan x 9. 1 tan 2 x csc 2 x tan 2 x 11. 1 tan sec csc tan 14. 12. sec 2 x(1 sin 2 x) 1 1 sin 2 cot2 2 1 cos 6 Notes on Solving Trig Equations Solve each of the following for 0 x 2 . 1. sinx - 2 = -sinx 2. 4sin2x – 3 = 0 3. sin2x = 2sinx 4. 2sin2x – 3sinx + 1 = 0 5. 3sec2x – 2tan2x – 4 = 0 6. sinx + 1 = cosx 7. sin2x - 8. tan x 1 0 2 3 0 2 9. 4tan2x + 5tanx = 6 7 Assignment: Solving Trig Equations 1. 2 cos x 3 0 3 sec x 2 0 2. 5. 4 cos x 2 cos x 1 8. cos 3x 1 Use separate paper as necessary. 6. 9. 2 tan 5x 2 2 sec x 2 10. sec 2x 2 3. sin 2x 1 7. 11. 4. tan 2x 1 3 tan x sin x sin x 2 sin x cos x 2 sin x 0 12. sin 2 x sin x 2 0 13. 2 cos 2 x 5 cos x 3 0 14. tan 2 x 2 tan x 1 0 15. sec 2 x 3 sec x 2 16. 4 sin 2 x 4 sin x 1 0 17. 2 cos 2 x 3 cos x 1 0 8 18. 2 cos 2 x cos x 19. tan x sec x tan x 20. 2 sin 2 5 x 3 sin 5 x 1 0 21. sin 2x cos x 22. sin 2x 2 cos x 0 23. cos 2x sin x 0 24. cos 2x sin x 1 25. cos2x 3cosx 1 26. cos 2x cos x 27. 1 cos x 1 sin x 30. 2 sin 2 x 2 cos x 28. sin 2 x 0 1 cos 2 x 31. 2 sin x csc x 0 29. sin 2 x cos 2 x 1 32. 2 sec 2 x tan 2 x 3 9 Notes on Sum/Difference Identities 5.4 Sum and Difference Formulas sin( ) sin cos cos sin tan( ) tan tan 1 tan tan tan( ) tan tan 1 tan tan sin( ) sin cos cos sin cos( ) cos cos sin sin cos( ) cos cos sin sin Evaluate using sum and difference formulas – (expanding) – to find the exact value of the following: 13 1. sin 15◦ 2. cos 1. “split” the angle 12 2. Write the formula 3. Fill in the values 4. Simplify Evaluate or simplify using sum and difference formulas – (compressing) – find the exact value of … 3 2 3 2 1. cos25◦ cos20◦ - sin25◦ sin20◦ 2. sin cos -- cos sin 5 5 5 5 Extra Problems: 1. Write sin(arctan1 + arccosx) as an algebraic expression 10 2. Prove: sin x cos x 2 5. Simplify: cos 30 x cos 30 x 3 x 3. Simplify: sin 2 4. Simplify: tan x 4 3 6. Solve: sin x sin x 1 2 2 on [0, 2π) 3 5 and tan where lies in quadrant II and lies in quadrant IV. Show your work for 5 12 the following. Express your answers as lowest term fractions. Given sin a. cos b. sin c. tan 11 Assignment: Sum and Difference Identities Simplify each Expression. 1. cos 42cos18 sin 42sin18 2. sin120cos 25 cos120sin 25 2 2 sin cos 3. cos cos 7 3 7 3 4. sin 5. sin3cos1.2 – cos3sin1.2 6. tan 240 tan 140 7. 1 tan 240 tan 140 3 2 3 2 cos cos sin 8 5 8 5 tan 2 x tan x 1 tan 2 x tan x tan tan 8. 1 tan tan 6 6 9. cos 71cos 29 sin 71sin 29 Evaluate the following. 10. sin15°cos30° + sin30°cos15° 11. cos105°cos15° + sin 105°sin15° 12 12. tan 60 tan 30 1 tan 60 tan 30 14. cos 13. 7 5 7 5 cos sin sin 6 6 6 6 tan 200 tan 70 1 tan 200 tan 70 15. sin 16. sin 25cos 35 cos 25sin 35 17. cos105cos15 sin105cos15 Evaluate the exact value of each expression (No Calculators) 7 18. cos 19. sin 75° 12 21. cos 7 12 2 2 cos sin cos 3 3 3 3 22. sin 12 20. cos(15) 23. tan 225 13 Simplify: 24. Simplify: tan x 4 26. Solve: sin( x 3 ) sin( x 25. cos 30 x cos 30 x 3 ) Evaluate. 27. If sin x 3 24 (x is in Quadrant I) and sin y (y is in Quadrant II), find cos (x + y). 5 25 28. Given sin u a. cos (u + v) 5 3 and cos v , both in quadrant II. Find. 13 5 b. sin (u – v) c. tan (u – v) 14 Notes on Double Angle Trig Identities 5.5 Double Angle Formulas sin 2 A 2 sin A cos A tan 2 A 2 tan A 1 tan 2 A cos 2 A cos 2 A sin 2 A cos 2 A 2 cos 2 A 1 cos 2 A 1 2 sin 2 A 3 5 and tan where lies in quadrant II and lies in quadrant IV. 5 12 Show your work for the following. Express your answers as lowest term fractions. Given sin 1) sin 2 _______________ 2) tan2 _______________ 3) cos2 _______________ II. Express each in terms of the sine, cosine, or tangent of a single angle. 4) tan 60 tan 45 1 tan 60 tan 45 6) 2 sin cos 9 9 5) 1 2sin 2 12 7) 2 tan 45 1 tan 2 45 15 Simplify, then Evaluate: 8) 2 cos 2 1 6 III. Solve the following equations over the interval 0, 2 10) sin 2x cos x 0 12) 9. cos 2 60 sin 2 60 11) tan( x ) 2sin( x ) 0 cos2x cos x 0 16 Notes on Half Angle Trig Identities Half Angle Formulas: A 1 cos A 2 2 A 1 cos A tan 2 1 cos A sin cos A 1 cos A 2 2 tan A 1 cos A 2 sin A tan A sin A 2 1 cos A 3 5 and tan where lies in quadrant II and lies in quadrant IV. Show your work 5 12 for the following. Express your answers as lowest term fractions. Given sin 1) sin _______________ 2 2) tan _______________ 2 3) cos _______________ 2 II. Use half angle identities to evaluate. Write radicals in simplest form. 3 4) sin 5) cos 165 6) tan 8 8 2 3 7) 2 1 cos 3 sin 5 3 8) 5 1 cos 3 1 cos 7 9) sec 12 17 Assignment Double/Half Angle Trig Identities Simplify: _________ 1) _________ 3) 2 cos 2 10 1 _________ 2) 2 sin 2 tan 3x 1 tan 2 3x _________ 4) cos 2 4 A sin 2 4 A _________ 5) 1 2 sin 2 21 _________ 7) x x cos 2 2 2 tan 25 1 tan 2 25 _________ 6) 4 tan x 1 tan 2 x __________ 8) 4 sin 7 7 cos 12 12 Simplify, then Evaluate: _________ 9) 2 sin 15 cos15 _________ 11) cos 2 12 sin 2 _________ 10) 2 tan / 8 1 tan 2 / 8 _________ 12) 1 2 sin 2 45 12 _________ 13) 2 cos 2 / 12 1 _________ 14) 2 sin 30 cos 30 Find the exact Solution of the equations on the interval 0 x 2 . Show all work. 15) sin 2x cos x 16. cos 2x sin x 0 17. tan 2x 2 cos x 0 18