Download Lesson - NSTA Communities

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Centripetal force wikipedia , lookup

Momentum wikipedia , lookup

Force wikipedia , lookup

Modified Newtonian dynamics wikipedia , lookup

Classical mechanics wikipedia , lookup

Classical central-force problem wikipedia , lookup

Newton's theorem of revolving orbits wikipedia , lookup

Equations of motion wikipedia , lookup

Inertia wikipedia , lookup

Newton's laws of motion wikipedia , lookup

Transcript
Science of NHL Hockey: Newton’s Three Laws of Motion
Subject Area: Physics
Grade Level: High School Physics
Lesson Title: Newton’s Three Laws of Motion
National Science Education Standards:
 Science as Inquiry: 9–12
 Motions and Forces: 9–12
Suggested Prior Knowledge: concepts of mass, velocity, and acceleration; lab techniques of
measuring mass, distance, and time. Note that students might more easily grasp the concepts in
this video if they have already viewed the video Kinematics.
Purpose and Introduction: This video focuses on the actions involved in playing the game of
hockey. Although all sports are subject to Newton’s three laws of motion in one way or another,
hockey shows especially clear examples. The activity will help students to understand Newton’s
three laws of motion and how they relate to the conservation of momentum.
Key Vocabulary
conservation of momentum—constancy of the total moment of a closed system; derived
from Newton’s third law.
impulse—force applied over a time interval; equal to the change in momentum, or the
product of mass and change in velocity, of an object the force acts on.
inertia—resistance to a change in motion of a moving object or a stationary object.
momentum—the product of an object’s mass and its velocity.
Newton’s first law of motion—Objects remain at rest or in motion with a constant speed and
direction unless acted upon by a force.
Newton’s second law of motion—The net force applied to an object is equal to the product
of the object’s mass and its acceleration; F = ma (net force = mass × acceleration).
Newton’s third law of motion—Every action has an equal but opposite reaction. For
instance, in a collision between two objects, the forces acting are equal in magnitude and
opposite in directions: F1 = –F2.
Objectives:
1. Students will design and carry out a demonstration of Newton’s first law of motion.
2. Students will design and carry out an investigation of Newton’s second law of motion.
3. Students will design and carry out a demonstration of the conservation of momentum and
explain its relation to Newton’s third law of motion.
Newton’s Three Laws of Motion (High School Lesson)
1
Materials:
- Safety goggles
- Hockey puck or bean bag
- Chalk
- Skateboard
- Bricks
- Spring scale
- Stopwatches
- Meter stick
- Tape or markers
- Ring stands
- String
- Blocks
- Spring
- Thread
- Scissors
Procedure:
1. After students view the video, discuss with them Newton’s three laws of motion. Have
volunteers summarize the presentation of inertia and conservation of momentum in the video,
and point out examples of the three laws as they view the video again—perhaps in slow
motion or with the sound muted. Emphasize to students that a hockey puck obeys Newton’s
laws, just as colliding hockey players do. (The same is true for a ball in other sports, such as
basketball, soccer, golf, or jai alai.) Focus on exploring each of the laws:
 How might a struck hockey puck demonstrate Newton’s first law of motion?
 How might two hockey players demonstrate Newton’s second law of motion?
 According to Newton’s third law of motion, how are forces applied between two colliding
hockey players?
 What is momentum?
 What does it mean that momentum is conserved?
2. Lab protocols should be followed incorporating safety equipment. Goggles must be worn at
all times.
3. Guide students to design investigations for Newton’s three laws. Allow students to examine
the materials available. Alternately, you might be able to borrow field hockey or street
hockey equipment from the physical education department for students to use in the gym,
cafeteria, or parking lot. The following are some questions to help focus students’ plans:
 What is true of a moving object? How can this tendency be shown by dropping an object?
 What law describes the behavior of an object acted on by a force?
 How can this law be demonstrated with a constant force and variable mass?
 What is true of two bodies forced apart by an expanding spring?
Newton’s Three Laws of Motion (High School Lesson)
2
4. The procedures suggested here are simple demonstrations of Newton’s three laws. However,
students may prefer to construct other demonstrations or activities using these materials. For
instance, the hockey puck can be placed on the skateboard for a demonstration of Newton’s
first law. If the skateboard is rolled and brought to a stop, the puck will continue in motion
and slide off the skateboard. Students should be encouraged to think of alternative ways the
equipment they have can be used to demonstrate Newton’s laws.
5. The hockey puck (or beanbag) and chalk are useful for a simple demonstration of inertia.
One student walks at a constant, moderate speed and tries to drop the puck onto a chalk
mark. Dropping the puck when it is directly over the chalk mark will not work. The student
must drop the puck slightly before reaching the mark. Students should be able to observe that
the puck hits the mark at the same time the student passes the mark. Students record and
analyze their results to explain how the law of inertia (Newton’s first law) is involved.
6. Students might demonstrate Newton’s second law using the skateboard and bricks to form a
body with a fixed mass. Encourage students to use the spring scale to measure the variable
accelerating force. They can use the meter stick, markers, and stop watches to measure the
speed of the accelerated body and the time the force acts. Students might need to practice
pulling the loaded skateboard with a constant force. They can measure the final speed of the
skateboard or its average speed while it is accelerating. Either method will demonstrate
Newton’s second law.
7. Like two colliding hockey players, unequal masses forced apart by an expanding spring
provide a simple example of conservation of momentum. Suggest students suspend two
blocks on strings of the same length from the ring stands, as pendulums. Then instruct
students to compress the spring and tie it with thread to maintain the compressed state.
Students should then firmly attach the spring to the side of one of the blocks between the two
blocks, being sure to measure the mass of that block including the spring. Students should
then cut the thread without disturbing the blocks, which may take practice. Students should
recognize that the more massive block will have the lesser velocity. If the arcs the blocks
swing are small, the distance each block recoils is proportional to its velocity. Students
should be able to verify that momentum is conserved, and they should be able to give a clear
explanation of how conservation of momentum is related to Newton’s third law.
8. As a follow-up activity, have students research deceleration in skating. How does a skater
increase friction to come to a sudden stop? What is the maximum deceleration possible?
Students can prepare posters or slide shows and share them with the class.
Additional Resources:
 http://www.mdsci.org/science-encounters/Demo/CupandCoin.html
 http://www.teachersdomain.org/resource/lsps07.sci.phys.maf.airtrack/
 http://www.usahockeymagazine.com/article/2009-08/science-hockey
 http://www.dummies.com/how-to/content/physics-understanding-newtons-first-law-ofmotion.html
 http://science.discovery.com/videos/100-greatest-discoveries-shorts-laws-of-motion.html
Newton’s Three Laws of Motion (High School Lesson)
3
Student Worksheet for Newton’s Three Laws of Motion
Experiment Title: _____________________________Date: __________Name: _____________
Student Hypothesis: _____________________________________________________________
Materials:
- Safety goggles
- Bean bag
- Chalk
- Skateboard
- Bricks
- Spring scale
- Stopwatches
- Meter stick
- Tape or markers
- Ring stands
- String
- Blocks
- Spring
- Thread
- Scissors
Procedure:
Wear safety goggles for all lab work.
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
________________________________________________________________________
Newton’s Three Laws of Motion (High School Lesson)
4
Data and Observations:
Analysis of Data: _______________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
Conclusions: ___________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
Newton’s Three Laws of Motion (High School Lesson)
5