Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Study Island Copyright © 2015 Edmentum - All rights reserved. Generation Date: 02/22/2015 Generated By: Robert Dilliplane 1. Simplify: (4x2 + 2x + 6)(3x - 5) A. 12x3 - 14x2 + 8x - 30 B. 12x3 - 14x2 + 8x + 30 C. 12x3 - 26x2 + 28x - 30 D. 12x3 + 26x2 + 28x + 30 2. Simplify the following expression. (2x5 + 9x4 - 17x2 + 30) - (8x5 + 13x4 + 5x2 - 5) A. -6x5 + 4x4 + 22x2 - 35 B. 10x5 + 22x4 - 12x2 + 25 C. 10x5 - 4x4 + 22x2 - 35 D. -6x5 - 4x4 - 22x2 + 35 3. Simplify: (3x - 9)(6x2 + 9x - 2) A. 18x3 - 27x2 - 87x - 18 B. 18x3 + 81x2 + 75x - 18 C. 18x3 - 81x2 + 75x + 18 D. 18x3 - 27x2 - 87x + 18 4. Simplify the following expression. (4x + 3)2 A. 16x2 + 12x + 9 B. 16x2 + 24x + 9 C. 16x2 - 9 D. 16x2 - 24x + 9 5. Simplify the following expression. (7x2 + 6x - 3) - (4x2 + 7) A. 11x2 + 6x - 10 B. 11x2 + 6x - 4 C. 3x2 + 6x - 10 D. 4x2 + 9x - 2 6. A polynomial expression is shown below. ex(2x3 + 4x2 - 6) - (x2 + 5)(x2 + 6) The expression is simplified to 17x4 + 36x3 - 11x2 - 54x - 30. What is the value of e? A. 8 B. 9 C. -9 D. -8 7. Simplify the following expression. (6x3 + 5x2 + 8) + (-2x3 + 2x - 4) A. 8x3 + 5x2 + 2x + 12 B. 4x3 + 2x - 4 C. 8x3 + 5x2 + 2x - 12 D. 4x3 + 5x2 + 2x + 4 8. Simplify: (x + 7)(4x2 + 8x + 7) A. 4x3 + 20x2 + 63x + 49 B. 4x3 + 20x2 - 49x + 49 C. 4x3 + 36x2 + 49x + 49 D. 4x3 + 36x2 + 63x + 49 9. Simplify the following expression. (7x2 - 5x + 6) + (-2x2 - 7x + 2) A. 5x2 - 2x + 8 B. 9x2 - 12x + 4 C. 5x2 - 2x - 8 D. 5x2 - 12x + 8 10. A polynomial expression is shown below. (12x5 - 30x4) - (sx3 - 7)(2x2 - 5x + 2) The expression is simplified to -12x3 + 14x2 - 35x + 14. What is the value of s? A. 6 B. -2 C. -6 D. 2 Answers 1. A 2. D 3. D 4. B 5. C 6. B 7. D 8. D 9. D 10. A Explanations 1. Since multiplication is commutative, it is easiest to rearrange the problem so that the binomial (3x - 5) comes before the trinomial (4x2 + 2x + 6). Now, distribute 3x - 5 across 4x2 + 2x + 6, then combine like terms. (3x - 5)(4x2 + 2x + 6) = (3x)(4x2) + (3x)(2x) + (3x)(6) + (-5)(4x2) + (-5)(2x) + (-5)(6) = 12x3 + 6x2 + 18x - 20x2 - 10x - 30 = 12x3 + 6x2 - 20x2 + 18x - 10x - 30 = 12x3 - 14x2 + 8x - 30 2. (2x5 + 9x4 - 17x2 + 30) - (8x5 + 13x4 + 5x2 - 5). 2x5 + 9x4 - 17x2 + 30 - 8x5 - 13x4 - 5x2 + 5 (2x5 - 8x5) + (9x4 - 13x4) + (-17x2 - 5x2) + (30 + 5) -6x5 - 4x4 - 22x2 + 35 Distribute the negative. Combine like terms. 3. Distribute 3x - 9 across 6x2 + 9x - 2, then combine like terms. (3x - 9)(6x2 + 9x - 2) = (3x)(6x2) + (3x)(9x) + (3x)(-2) + (-9)(6x2) + (-9)(9x) + (-9)(-2) = 18x3 + 27x2 - 6x - 54x2 - 81x + 18 = 18x3 + 27x2 - 54x2 - 6x - 81x + 18 = 18x3 - 27x2 - 87x + 18 4. Start by writing the expression as a product of two binomials, and then use the FOIL method (First Outer Inner Last) to multiply the two expressions. Then, combine like terms. (4x + 3)2 = (4x + 3)(4x + 3) = 16x2 + 12x + 12x + 9 = 16x2 + 24x + 9 5. Since the expression shows the subtraction of a polynomial, distribute the negative, and then combine like terms. (7x2 + 6x - 3) - (4x2 + 7) = 7x2 + 6x - 3 - 4x2 - 7 = (7x2 - 4x2) + (6x) + (-3 - 7) = 3x2 + 6x - 10 6. First, set the polynomial expression equal to the simplified expression. Then, simplify both sides of the equation. ex(2x3 + 4x2 - 6) - (x2 + 5)(x2 + 6) = 17x4 + 36x3 - 11x2 - 54x - 30 2ex4 + 4ex3 - 6ex - (x4 + 6x2 + 5x2 + 30) = 17x4 + 36x3 - 11x2 - 54x - 30 2ex4 + 4ex3 - 6ex - (x4 + 11x2 + 30) = 17x4 + 36x3 - 11x2 - 54x - 30 2ex4 + 4ex3 - 6ex - x4 - 11x2 - 30 = 17x4 + 36x3 - 11x2 - 54x - 30 (2ex4 - x4) + 4ex3 - 11x2 - 6ex - 30 = 17x4 + 36x3 - 11x2 - 54x - 30 (2e - 1)x4 + 4ex3 - 11x2 - 6ex - 30 = 17x4 + 36x3 - 11x2 - 54x - 30 (2e - 1)x4 + (4e)x3 + (-6e)x = 17x4 + 36x3 - 54x Next, solve for e. (2e - 1)x4 = 17x4</td 2e - 1 = 17 2e = 18 e=9 (4e)x3 = 36x3 4e = 36 e=9 (-6e)x = -54x -6e = -54 e=9 Therefore, the value of e is 9. 7. Since it is addition of two polynomials, drop the parenthesis and collect like terms. (6x3 + 5x2 + 8) + (-2x3 + 2x - 4) = 6x3 + 5x2 + 8 - 2x3 + 2x - 4 = (6x3 - 2x3) + 5x2 + 2x + (8 - 4) = 4x3 + 5x2 + 2x + 4 8. Distribute x + 7 across 4x2 + 8x + 7, then combine like terms. (x + 7)(4x2 + 8x + 7) = (x)(4x2) + (x)(8x) + (x)(7) + (7)(4x2) + (7)(8x) + (7)(7) = 4x3 + 8x2 + 7x + 28x2 + 56x + 49 = 4x3 + 8x2 + 28x2 + 7x + 56x + 49 = 4x3 + 36x2 + 63x + 49 9. Since it is addition of two polynomials, drop the parentheses and collect like terms. (7x2 - 5x + 6) + (-2x2 - 7x + 2) = 7x2 - 5x + 6 - 2x2 - 7x + 2 = (7x2 - 2x2) + (-5x - 7x) + (6 + 2) = 5x2 - 12x + 8 10. First, set the polynomial expression equal to the simplified expression. Then, simplify both sides of the equation. (12x5 - 30x4) - (sx3 - 7)(2x2 - 5x + 2) = -12x3 + 14x2 - 35x + 14 12x5 - 30x4 - (2sx5 - 5sx4 + 2sx3 - 14x2 + 35x - 14) = -12x3 + 14x2 - 35x + 14 12x5 - 30x4 - 2sx5 + 5sx4 - 2sx3 + 14x2 - 35x + 14 = -12x3 + 14x2 - 35x + 14 12x5 - 30x4 - 2sx5 + 5sx4 - 2sx3 = -12x3 (12x5 - 2sx5) + (-30x4 + 5sx4) - 2sx3 = -12x3 (12 - 2s)x5 + (-30 + 5s)x4 + (-2s)x3 = -12x3 Next, solve for s. (12 - 2s)x5 = 0x5 12 - 2s = 0 -2s = -12 s=6 (-30 + 5s)x4 = 0x4 -30 + 5s = 0 5s = 30 s=6 (-2s)x3 = 12x3 -2s = -12 s=6 Therefore, the value of s is 6.