Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Section –V Trigonometric Functions of multiple angles Almost all trigonometric formula have been generated by sin( A B ) formula Now we will observe that most useful formulas being generated by these formula’s. The formulas express Trigonometric functions of the angle n A in terms of Trigonometric Functions of angles A where n is an integer ( in general n can be positive rational ) we start deriving these formula’s.We will put frequently used formulas in a block. sin 2 A sin( A B) sin A cos A cos A sin A 2 sin Acos A Thus sin 2 A 2 sin A cos A We can similarly derive, sin 4 A 2 sin 2 A cos 2 A, sin 8 A 2 sin 4 A cos 4 A, sin A 2 sin A A cos 2 2 A A A 2 sin n1 cos n1 n 2 2 2 Again cos 2 A cos ( A A) cos A cos A sin A sin A cos 2 A sin 2 A sin But cos 2 A sin 2 A cos 2 A (1 cos 2 A) 2 cos 2 A 1 1 2 sin 2 A Thus cos 2 A cos 2 A sin 2 A 2 cos 2 A 1 1 2 sin 2 A We can similarly derive cos 4 A cos 2 2 A sin 2 2 A 2 cos 2 2 A 1 1 2 sin 2 2 A A A A A cos A cos 2 sin 2 2 cos 2 1 1 2 sin 2 2 2 2 2 tan A tan A 2 tan A Again tan 2 A tan( A A) . 1 tan A tan A 1 tan 2 A A 2 tan 2 tan A 2 tan 2 A 2 Thus tan 2 A Also tan 4 A or tan A 2 2 A 1 tan A 1 tan 2 A 1 tan 2 2 2 2 tan A 1 tan A we can easily get sin 2 A , cos 2 A 2 1 tan A 1 tan 2 A Or cos 2 A sin 2 A (1 sin 2 A) sin 2 A 3A formulas :- sin 3 A sin(2 A A) sin A cos 2 A cos A sin 2 A = sin A (1 2 sin 2 A) cos A.2 sin A cos A = sin A (1 2 sin 2 A) 2 sin A(1 sin 2 A) = 3sin A 4 sin 3 A cos3 A cos( A 2 A) cos A cos 2 A sin Asin 2 A = cos A (2 cos 2 A 1) 2 sin 2 A cos A = cos A(2 cos 2 A 1) 2 (1 cos 2 A) cos A = 4cos3 A 3cos A tan 3 A tan( A 2 A) tan A tan 2 A 1 tan A tan 2 A 2 tan A 3 1 tan 2 A = 3tan A tan A = 2 tan A 1 3tan 2 A 1 tan A. 1 tan 2 A sin 3 A 3sin A 4 sin 3 A tan A Thus cos 3 A 4 cos 3 A 3 cos A tan 3 A 3 tan A tan 3 A 1 3 tan 2 A (i) (ii) The sine, cosine, tangents of angle of n A when n 4 can also be found. We will observe that if n is a positive integer. cos nA will be a polynomial of degree n in cos A for all n . sin nA will be a polynomial of degree n in sin A if n is odd . (iii) tan nA n C1 tan A n C3 tan 3 A n C5 tan 5 A..... 1 n C2 tan 2 A n C4 tan 4 A..... The proof of (i), (ii), (iii) involve three branches of algebra which are complex numbers, binomial theorem and polynomial theory. We will limit our solves upto n 5 . The general proof is beyond the scope of this book. 2 For example : cos 4 A 2 cos 2 2 A 1 2 2 cos 2 A 1 1 8 cos 4 A 8 cos 2 A 1 or cos 4 A Real part of cos 4 A i sin 4 A 4 Real part of cos A i sin A Real part of cos A 4 4 C1 cos A i sin A 4C2 cos A i sin A 4C3 cos A i sin A 4C4 i sin A 3 2 cos 4 A 6 cos 2 A sin 2 A sin 4 A 2 1 3 2 cos 4 A 6 cos 2 A 1 cos 2 A 1 cos 2 A 8 cos 4 A 8 cos 2 A 1 5 sin 5 A Imaginary part of cos 5 A i sin 5 A I.P of cos A i sin A This time writing only Imaginary part we get i sin 5 A 5C1 cos A i sin A 5C3 cos A i sin A 5C5 i sin A 4 1 2 3 5 sin 5 A 5 sin Acos A 10 sin 3 A cos 2 A sin A 4 5 2 5sin A 1 sin 2 A 10sin3 A 1 sin2 A sin5 A 16 sin 5 A 20 sin 3 A 5 sin A (*) The above discussion may lead to something very basic in mathematics that sin x , or cos x are solutions of polynomial equations with integer coefficients. For example If A 18 then 5A 90 from (*) 1 16 x 5 20 x 3 5 x where x sin A 5 3 or 16 x 20 x 5 x 1 0 sin 18 is a solution of a polynomial equation with integer coefficients. Actually numbers which are solutions of polynomial equations with integer coefficients are called algebraic numbers. The number is not algebraic but cos 20 is algebraic since 4 cos 60 4 cos3 20 3 cos 20 (by formula cos 3 A 4 cos3 A 3 cos A ) 1 / 2 4 x 3 3x where x cos 20 3 8x 6 x 1 0 cos 20 is algebraic We will later see that sin 18 is a solution of a polynomial equation with much lesser degree. SQUARE, CUBE FROM POWER REMOVAL : From 2 A formula’s we can get rid of power 2,3,4 easily. For example : 1 cos 2 A 1 cos 2 A , sin 2 A 2 2 cos 3 A 3 cos A 3 sin A sin 3 A cos3 A , sin 3 A 4 4 cos 2 A 1 2 cos 2 A cos 2 2 A 4 1 cos 4 A 1 2 cos 2 A 3 1 1 2 cos 2 A cos 4 A 8 2 8 4 2 1 cos 2 A cos 4 A cos 2 A 2 2 (**) 3 1 1 Similarly sin 4 A cos 2 A cos 4 A etc. From these fourth power formula we easily get 8 2 8 cos 4 8 cos 4 3 5 7 3 cos 4 cos 4 by using (**) several times. 8 8 8 2 SOLVED EXAMPLES Example 1 : Prove that cot - cot 2 = cosec 2 Solution : cot cot 2 cos cos 2 sin 2 cos cos 2 sin sin sin 2 sin sin 2 sin 2 sin cos ec 2 RHS sin sin 2 sin sin 2 Example 2 : Prove that 1 + cot 2 cot = cosec 2 cot Solution : 1 cot 2 cot 1 cos 2 cos sin 2 sin sin 2 sin cos 2 cos cos2 cos 1 . sin 2 sin sin 2 sin sin sin 2 cot cos ec2 RHS Example 3 : tan + cot = 2cosec 2 Solution : LHS tan cot 2 2 sin cos sin cos sin 2 cos 2 1 cos sin sin cos sin cos 2 2 cos ec 2 sin 2 2 Example 4 : A A sin cos 1 sin A 2 2 Solution : LHS sin 2 Example 5 : Prove that Solution : LHS A A A A cos 2 2 sin cos 1 sin A 2 2 2 2 cos 2 tan 45 1 sin 2 cos 2 cos 2 sin 2 cos sin cos sin 2 1 sin 2 cos sin 2 cos sin cos sin 1 tan tan 45 tan tan 45 cos sin 1 tan 1 tan 45 tan OR sin 2 2 sin cos cos 2 2 4 4 tan 4 1 sin 2 2 1 cos 2 2 cos 2 4 (Applying sin A 2 sin 1 cos A 2 cos 2 A A cos where role of A is being played by 2 and 2 2 2 A with A as 2 ) 2 2 Example 6 : Prove that cos cos sin sin 4cos2 Solution : On squaring 2 LHS 2 2 cos 2 cos 2 2 cos cos sin 2 sin 2 2 sin sin 2 2cos cos sin sin 2 2 cos 21 cos 2.2 cos 2 4 cos 2 2 2 (Applying 1 cos A 2 cos 2 RHS A with A as ) 2 Example 7 : Prove that cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1 Solution : cos 6x 2 cos 2 3x 1 ( cos 2 A 2 cos 2 A 1 with A as 3x ) 2 2 4cos3 x 3cos x 1 32cos6 x 48cos4 x 18cos2 x 1 Example 8 : A Prove that sin A 1 2sin 2 45 2 Solution : A RHS 1 2 sin 2 45 1 2 sin 2 2 A 45 2 cos 2 cos90 A sin A Example 9 : Prove that cos2 sin 2 sin 2 4 4 Solution : On removing squares 1 cos 2 4 cos 2 4 2 1 cos 2 2 1 sin 2 2 2 1 cos 2 2 1 sin 2 sin 2 2 2 4 On subtracting we get the desired result Example 10 : Prove that Solution : LHS 1 sin 2 cos 2 tan 1 sin 2 cos 2 1 cos 2 sin 2 2sin 2 2sin cos 1 cos 2 sin 2 2cos 2 2sin cos 2 sin sin cos tan RHS 2 cos cos sin Example 11 : Prove that sin 2 x 2sin 4 x sin 6 x 4cos 2 x sin 4 x Solution : LHS sin 2 x sin 6 x 2sin 4 x 2 sin 4x cos 2x 2 sin 4x 2 sin 4 x1 cos 2 x 2 sin 4 x.2 cos 2 x 4 cos 2 x sin 4 x RHS Example 12 : Prove that 2 cos Solution : 1 cos 4 2 cos 2 2 2 2 2 cos 4 2 2 cos 4 4 cos 2 2 On taking square root 2 2 cos 4 2 cos 2 On adding 2 on both sides we get 2 2 2 cos 4 2 2 cos 2 21 cos 2 2.2 cos 2 On taking the square root again we get 2 2 2 cos 4 2 cos as desired Example 13 : Prove that tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A Solution : LHS tan A 2 tan 2 A 4 tan 4 A 8cot 8 A cot A tan A 2 tan 2 A 4 tan 4 A 8cot 8 A cot A (Subtracting and adding cot A ) Now cot A tan A cos A sin A sin 2 A cos 2 A sin A cos A sin A cos A cos 2 A .2 2 cot 2 A 2 sin A cos A (*) LHS 2cot 2 A 2 tan 2 A 4 tan 4 A 8cot 8 A cot A 4cot 4 A 4 tan 4 A 8cot 8 A cot A (using (*) for A replaced by 2 A ) 8cot 8 A 8cot 8 A cot A (Again using (*)) cot A RHS Example 14 : Prove that Solution : sec 8 A 1 sec 4 A 1 sec8 A 1 tan 8 A sec 4 A 1 tan 2 A 1 1 1 cos 8 A cos 4 A cos 8 A . 1 cos 8 A 1 cos 4 A 1 cos 4 A 2 sin 2 4 A cos 4 A 2 sin 4 A cos 4 A sin 4 A , . 2 sin 2 2 A cos 8 A cos 8 A 2 sin 2 2 A tan 8 A . 2 sin 2 A cos 2 A tan 8 A 2 sin 2 2 A tan 2 A A if tan A 3 / 4 2 Example 15 : Find the values of tan Solution : A 2 2 x where x tan A tan A A 1 x2 2 1 tan 2 2 2 tan Now tan A 3 / 4 A is either in first quadrant (or 2n to 2n quadrant (i.e. from 2n to 2n If A is from 2n to 2n 2 then If A is from 2n to 2n tan 2. 2 ) OR in the third 3 ) 2 A A 1 A tan 0 tan is from n to n 4 2 2 3 2 3 A 3 then is from n to n 2 2 4 2 A A 0 tan 3 2 2 EXERCISE 1. x x x Find sin ,cos and tan in each of the following : 2 2 2 4 1 (1). (2). tan x , x in quadrant II cos x , in quadrant III 3 3 1 (3). tan x , in quadrant II 4 Prove the following identities: (1) cosec 2 - cot 2 = tan (2) 1 + tan 2 tan = sec 2 (3) 2 cosec 2 = sec cosec (4) cos4 - sin4 = cos 2 (5) cot - tan = 2cot 2 (6) cot 2 A (7) cot A tan A cos 2 A cot A tan A (8) 1 cot 2 A cos ec 2 A 2cot A (9) cot 2 A 1 sec 2 A cot 2 A 1 (10) 1 sec 2cos2 sec 2 (11) 2 sec2 cos 2 sec2 (12) cos ec 2 2 cos 2 cos ec 2 cot 2 A 1 2cot A cos 2 cot 45 1 sin 2 2 (13) A A sin cos 1 sin A 2 2 (15) sin 8A = 8sin A cos A cos 2A cos 4A (17) cos 2 sin 2 cos3 sec cosec 2 (14) 2 (16) 1 + cos 4A = 2cos 2A(1 – 2sin2 A) tan 4 (18) cos 4x = 1 – 8 sin x cos x (20) (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0 (21) cot (22) cosec (sec - 1) – cot (1 – cos ) = tan - sin (23) tan(45 + A)– tan(45 - A) = 2tan 2A (24) tan (45 + A) + tan(45 - A) = 2 sec 2A (26) cot 3 A (28) sin 3 sin 3 cot cos3 cos3 (30) cos 5A cos 2A – cos 4A cos 3A = -sin 2A sin A (31) sin 4 cos - sin 3 cos 2 = sin cos 2 (32) 4sin A sin(60 + A)sin(60 - A) = sin 3A (33) 2 2 4cos cos cos cos3 3 3 (34) 2 2 cos cos cos 0 3 3 (35) cos2 A + cos2 (60 + A) + cos2 (60 – A) = 3/2 (36) sin2 A + sin2(120 + A) + sin2(120 - A) = 3/2 (37) (38) (39) (19) 4 tan 1 tan 2 1 6 tan tan 2 4 sin cos ec 1 cos cot 3 A 3cot A 3cot 2 A 1 sin sin sin sin sin sin cot 2 cot (25) sin 3 A cos3 A 2 sin A cos A (27) 3cos cos3 cot 3 3sin sin 3 (29) cos3 cos3 sin 3 sin 3 3 cos sin 2 (cos A – sin A)(cos 2A – sin 2A) = cos A – sin 3A sin 2 A cos 2 A 1 tan A2 2 tan 2 A 1 tan A 2 (40) sin 4 A 4 tan A 1 tan 2 A 1 tan A 2 2 4cos 2 A 1 2sin 2 A (41) cot 15 A tan 15 A (42) cot 15 A tan 15 A (43) tan A 30 tan A 30 (44) (2cos A + 1)(2cos A – 1)(2cos 2A – 1) = 2cos 4A + 1 (45) cos2( - ) + cos2( - ) + cos2( - ) = 1 + 2cos ( - )cos( - )cos( - ) (46) 2cos2 (45 - A) = 1 + sin 2A (47) 2cos 2x cosec 3x = cosec x – cosec 3x (49) 2tan 2x = (50) (cos x + cos y)2 + (sin x – sin y)2 = 4cos2 x y 2 (51) (cos x – cos y)2 + (sin x – sin y)2 = 4sin 2 x y 2 (52) 1 sin 2 x tan 2 x 1 sin 2 x 4 (54) (sin3x sin x)sin x (cos3x cos x)cos x 0 (55) 1 1 sin A 2sin 3 A sin 5 A sin 3 A cot 2 A. (56) tan 3 A tan A cot 3 A cot A sin 3 A 2sin 5 A sin 7 A sin 5 A (57) sin 6 (58) 3A A A A 4 cos sin sin cos ec 2 2 6 2 3 2 (59) cos 5 = 16 cos5 - 20 cos3 + 5 cos (60) cos A cos (60 – A) cos(60 + A) = ¼ cos 3A (61) cos8 A cos 5 A cos12 A cos 9 A tan 4 A sin 8 A cos 5 A cos12 A sin 9 A (62) cos3 A cos3 120 A cos3 240 A 4 cos 2 A 3 sin 2 A 1 2cos 2 A 1 2cos 2 A (48) cos A cos 2A cos 4A cos 8A = sin16 A 16sin A cos x sin x cos x sin x cos x sin x cos x sin x (53) cos3 sin 3 2cot 2 sin cos A A 3 cos 6 sin 2 A 4 cos A. 2 2 4 3 cos 3 A 4 (63) 2sin A cos3 A – 2sin3 A cos A = 1 sin 4A 2 (64) sin 3A cos3 A + cos 3A sin3 A = 3 sin 4A 4 (65) tan 3 cot 3 1 2sin 2 cos 2 sin cos 1 tan 2 1 cot 2 (66) 2cos cos cos ( + ) = cos2 + cos2 - sin2 ( + ). sin 2 3 cos 2 3 8cos 2 sin 2 cos 2 (67) 3 1 sin 4 A cot 2 A cos 4 A 0 4 (69) 2cos - cos 3 - cos 5 = 16cos3 sin2 (70 cos3 ( + ) sin3 ( - ) + cos3 ( + ) sin3 ( - ) + cos3 ( + ) sin3 ( - ) (68) = 3cos ( + ) cos ( + ) cos( + ) sin( - ) sin( - ) sin ( - ) 2. (71) cos2 A + cos2 B – 2cos A cos B cos(A + B) = sin2 (A + B). (72) tan 3 A cot 3 A sec A cos ec A sin 2 A 1 tan 2 A 1 cot 2 A (73) tan tan 60 tan tan 60 tan 60 tan 60 3 (74) 2sin4 - sin 10 +sin2 = 16sin cos cos 2 sin 2 3 . Prove the following numerical equalities (based on last three sections) (1) cos 80 + cos 40 – cos 20 = 0 (2) cos 130 cos 40 + sin 130 sin 40 = 0 (3) cos 5 – sin 25 = sin 35 (4) cos 70 cos 10 + sin 70 sin 10 = ½ (5) sin 65 + cos 65 = 2 cos 20 (6) sin 78 – sin 18 + cos 132 = 0 (7) cot 15 + cot 75 + cot 135 – cosec 30 = 1 (8) (9) sin 10 sin 30 sin 50 sin 70 = 1/16 1 sin 20 sin 40 sin 80 = 3 8 (10) tan 40 + cot 40 = 2sec 10 2 (11) tan 70 + tan 20 = 2 cosec 40 (12) (13) tan 6 tan 42 tan 66 tan 78 = 1 (14) cos 33 cos 57 1 (16) sin 21 cos 21 2 cos 20 2sin 2 55 1 2 sin 65 2 (15) (17) 2 1 cot 60 1 cos30 1 cot 60 1 cos30 cosec 10 - 3 sec10 = 4 1 cos ec10 2sin 70 1 2 3. (18) sin 70 8cos 20 cos 40 cos80 2 cos 2 10 (19) cos 2 73 cos 2 47 cos 73 cos 47 (20) tan10 tan 70 tan 50 3 (21) tan 20 + tan 40 + 3 4 3 tan 20tan 40 3 If sin A + sin B + sin C = cos A + cos B + cos C = 0, prove that sin2 A + sin2 B + sin2 C = cos2 A + cos2 B + cos2 C = 3/2 ANSWERS 1. (1). 2 5 5 , ,2 5 5 (2). 6 3 , , 2 3 3 (3). 8 2 15 8 2 15 , , 4 15 4 4