Download Section –V Trigonometric Functions of multiple angles Almost all

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Section –V Trigonometric Functions of multiple angles
Almost all trigonometric formula have been generated by sin( A  B ) formula
Now we will observe that most useful formulas being generated by these formula’s.
The formulas express Trigonometric functions of the angle n A in terms of Trigonometric
Functions of angles A where n is an integer ( in general n can be positive rational ) we start deriving
these formula’s.We will put frequently used formulas in a block.
sin 2 A  sin( A  B)  sin A cos A  cos A sin A  2 sin Acos A
Thus sin 2 A  2 sin A cos A
We can similarly derive,
sin 4 A  2 sin 2 A cos 2 A, sin 8 A  2 sin 4 A cos 4 A, sin A  2 sin
A
A
cos
2
2
A
A
A
 2 sin n1 cos n1
n
2
2
2
Again cos 2 A  cos ( A  A)  cos A cos A  sin A sin A  cos 2 A  sin 2 A
sin
But cos 2 A  sin 2 A  cos 2 A  (1  cos 2 A)  2 cos 2 A  1
 1 2 sin 2 A
Thus cos 2 A  cos 2 A  sin 2 A  2 cos 2 A  1  1  2 sin 2 A
We can similarly derive cos 4 A  cos 2 2 A  sin 2 2 A  2 cos 2 2 A  1  1  2 sin 2 2 A
A
A
A
A
cos A  cos 2  sin 2  2 cos 2  1 1  2 sin 2
2
2
2
2
tan A  tan A
2 tan A

Again tan 2 A  tan( A  A) 
.
1  tan A tan A 1  tan 2 A
A
2 tan
2 tan A
2 tan 2 A
2
Thus tan 2 A 
Also tan 4 A 
or tan A 
2
2
A
1  tan A
1  tan 2 A
1  tan 2
2
2
2 tan A
1  tan A
we can easily get sin 2 A 
, cos 2 A 
2
1  tan A
1  tan 2 A
Or cos 2 A  sin 2 A  (1  sin 2 A)  sin 2 A
3A formulas :-
sin 3 A  sin(2 A  A)
 sin A cos 2 A  cos A sin 2 A = sin A (1  2 sin 2 A)  cos A.2 sin A cos A
= sin A (1  2 sin 2 A)  2 sin A(1  sin 2 A) = 3sin A  4 sin 3 A
cos3 A  cos( A  2 A)  cos A cos 2 A  sin Asin 2 A
=
cos A (2 cos 2 A  1)  2 sin 2 A cos A = cos A(2 cos 2 A  1)  2 (1  cos 2 A) cos A
= 4cos3 A  3cos A
tan 3 A  tan( A  2 A) 
tan A  tan 2 A
1  tan A tan 2 A
2 tan A
3
1  tan 2 A = 3tan A  tan A
=
2 tan A
1  3tan 2 A
1  tan A.
1  tan 2 A
sin 3 A  3sin A  4 sin 3 A
tan A 
Thus
cos 3 A  4 cos 3 A  3 cos A
tan 3 A 
3 tan A  tan 3 A
1  3 tan 2 A
(i)
(ii)
The sine, cosine, tangents of angle of n A when n  4 can also be found.
We will observe that if n is a positive integer.
cos nA will be a polynomial of degree n in cos A for all n .
sin nA will be a polynomial of degree n in sin A if n is odd .
(iii)
tan nA 
n
C1 tan A  n C3 tan 3 A  n C5 tan 5 A.....
1  n C2 tan 2 A  n C4 tan 4 A.....
The proof of (i), (ii), (iii) involve three branches of algebra which are complex numbers, binomial
theorem and polynomial theory. We will limit our solves upto n  5 . The general proof is beyond the
scope of this book.


2
For example : cos 4 A  2 cos 2 2 A  1  2 2 cos 2 A  1  1  8 cos 4 A  8 cos 2 A  1
or cos 4 A  Real part of cos 4 A  i sin 4 A
4
 Real part of cos A  i sin A
 Real part of
cos A 
4
4
C1 cos A i sin A  4C2 cos A i sin A  4C3 cos A i sin A  4C4 i sin A
3
2
 cos 4 A  6 cos 2 A sin 2 A  sin 4 A

 
2
1
3

2
 cos 4 A  6 cos 2 A 1  cos 2 A  1  cos 2 A
 8 cos 4 A  8 cos 2 A  1
5
sin 5 A  Imaginary part of cos 5 A  i sin 5 A  I.P of cos A  i sin A
This time writing only Imaginary part we get
i sin 5 A  5C1 cos A i sin A  5C3 cos A i sin A  5C5 i sin A
4
1
2
3
5
 sin 5 A  5 sin Acos A  10 sin 3 A cos 2 A  sin A
4

5

2

 

 5sin A 1  sin 2 A  10sin3 A 1  sin2 A  sin5 A
 16 sin 5 A  20 sin 3 A  5 sin A
(*)
The above discussion may lead to something very basic in mathematics that sin x , or
cos x are solutions of polynomial equations with integer coefficients.
For example If A 18 then 5A  90 from (*)
 1  16 x 5  20 x 3  5 x
where x  sin A
5
3
or 16 x  20 x  5 x  1  0
 sin 18 is a solution of a polynomial equation with integer coefficients. Actually numbers
which are solutions of polynomial equations with integer coefficients are called algebraic
numbers. The number  is not algebraic but cos 20 is algebraic since
4

cos 60  4 cos3 20  3 cos 20 (by formula cos 3 A  4 cos3 A  3 cos A )
 1 / 2  4 x 3  3x
where x  cos 20
3
 8x  6 x  1  0
 cos 20 is algebraic
We will later see that sin 18 is a solution of a polynomial equation with much lesser degree.
SQUARE, CUBE FROM POWER REMOVAL : From 2 A formula’s we can get rid of power 2,3,4
easily. For example :
1  cos 2 A
1  cos 2 A
, sin 2 A 
2
2
cos 3 A  3 cos A
3 sin A  sin 3 A
cos3 A 
, sin 3 A 
4
4
cos 2 A 
1  2 cos 2 A  cos 2 2 A
4
1  cos 4 A
1  2 cos 2 A 
3 1
1
2
  cos 2 A  cos 4 A

8 2
8
4
2
 1  cos 2 A 
cos 4 A  cos 2 A  

2




2

(**)
3 1
1
Similarly sin 4 A   cos 2 A  cos 4 A etc. From these fourth power formula we easily get
8 2
8
cos 4

8
 cos 4
3
5
7 3
 cos 4
 cos 4
 by using (**) several times.
8
8
8
2
SOLVED EXAMPLES
Example 1 :
Prove that cot  - cot 2 = cosec 2
Solution :
cot   cot 2 

cos  cos 2 sin 2 cos   cos 2 sin 


sin  sin 2
sin  sin 2
sin 2   
sin 

 cos ec 2  RHS
sin  sin 2 sin  sin 2
Example 2 :
Prove that 1 + cot 2 cot  = cosec 2 cot 
Solution :
1  cot 2 cot   1 

cos 2 cos 
sin 2 sin 
sin 2 sin   cos 2 cos  cos2    cos 
1


.
sin 2 sin 
sin 2 sin  sin  sin 2
cot  cos ec2  RHS
Example 3 :
tan  + cot  = 2cosec 2
Solution :
LHS  tan   cot  
2
2 sin  cos 
sin  cos  sin 2   cos 2 
1



cos  sin 
sin  cos 
sin  cos 

2
 2 cos ec 2
sin 2
2
Example 4 :
A
A

 sin  cos   1  sin A
2
2

Solution :
LHS  sin 2
Example 5 :
Prove that
Solution :
LHS 
A
A
A
A
 cos 2  2 sin cos  1  sin A
2
2
2
2
cos 2
 tan  45   
1  sin 2
cos 2
cos 2   sin 2   cos   sin   cos   sin  


2
1  sin 2  cos   sin  2
 cos  sin  
cos   sin  1  tan 
tan 45  tan 


 tan 45   
cos   sin  1  tan  1  tan 45 tan 
OR



 

sin   2 
2 sin     cos   
cos 2
2
 
4
 4
  tan     



4
1  sin 2



2 


1  cos  2 
2 cos    
2
4




(Applying sin A  2 sin
1  cos A  2 cos 2
A
A

cos where role of A is being played by  2 and
2
2
2

A
with A as  2 )
2
2
Example 6 :
Prove that  cos  cos     sin   sin    4cos2
Solution :
On squaring
2
LHS
2
 
2
 cos 2   cos 2   2 cos  cos   sin 2   sin 2   2 sin  sin 
 2  2cos  cos   sin  sin  
 2  2 cos     21  cos   
 2.2 cos 2
 4 cos 2
 
2
 
2
(Applying 1  cos A  2 cos 2
 RHS
A
with A as     )
2
Example 7 :
Prove that cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Solution :
cos 6x  2 cos 2 3x  1

( cos 2 A  2 cos 2 A  1 with A as 3x )

2
 2 4cos3 x  3cos x  1  32cos6 x  48cos4 x  18cos2 x  1
Example 8 :
A

Prove that sin A  1  2sin 2  45  
2

Solution :
A

RHS  1  2 sin 2  45    1  2 sin 2 
2

A

  45  
2

 cos 2  cos90  A  sin A
Example 9 :




Prove that cos2      sin 2      sin 2
4

4

Solution :
On removing squares


1  cos 2   


4

cos 2     
4
2




1  cos  2 
2
  1  sin 2

2
2


1  cos  2 


2
  1  sin 2
sin 2     
2
2
4

On subtracting we get the desired result
Example 10 :
Prove that
Solution :
LHS
1  sin 2  cos 2
 tan 
1  sin 2  cos 2

1  cos 2  sin 2 2sin 2   2sin  cos

1  cos 2  sin 2 2cos 2   2sin  cos

2 sin  sin   cos  
 tan   RHS
2 cos  cos   sin  
Example 11 :
Prove that sin 2 x  2sin 4 x  sin 6 x  4cos 2 x sin 4 x
Solution :
LHS
 sin 2 x  sin 6 x  2sin 4 x
 2 sin 4x cos 2x  2 sin 4x
 2 sin 4 x1  cos 2 x   2 sin 4 x.2 cos 2 x
 4 cos 2 x sin 4 x  RHS
Example 12 :
Prove that 2 cos  
Solution :
1  cos 4  2 cos 2 2
2  2  2 cos 4
 2  2 cos 4  4 cos 2 2
On taking square root  2  2 cos 4  2 cos 2
On adding 2 on both sides we get
2  2  2 cos 4  2  2 cos 2  21  cos 2   2.2 cos 2 
On taking the square root again we get
2  2  2 cos 4  2 cos  as desired
Example 13 :
Prove that tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A
Solution :
LHS
 tan A  2 tan 2 A  4 tan 4 A  8cot 8 A
  cot A  tan A  2 tan 2 A  4 tan 4 A  8cot 8 A  cot A
(Subtracting and adding cot A )
Now
 cot A  tan A  

cos A sin A sin 2 A  cos 2 A


sin A cos A
sin A cos A
 cos 2 A
.2  2 cot 2 A
2 sin A cos A
(*)
 LHS  2cot 2 A  2 tan 2 A  4 tan 4 A  8cot 8 A  cot A
 4cot 4 A  4 tan 4 A  8cot 8 A  cot A (using (*) for A replaced by 2 A )
 8cot 8 A  8cot 8 A  cot A
(Again using (*))
cot A  RHS
Example 14 :
Prove that
Solution :
sec 8 A  1
sec 4 A  1
sec8 A  1 tan 8 A

sec 4 A  1 tan 2 A
1
1
1  cos 8 A cos 4 A
 cos 8 A

.
1
cos
8
A
1  cos 4 A
1
cos 4 A

2 sin 2 4 A cos 4 A 2 sin 4 A cos 4 A sin 4 A
,

.
2 sin 2 2 A cos 8 A
cos 8 A
2 sin 2 2 A
 tan 8 A .
2 sin 2 A cos 2 A tan 8 A

2 sin 2 2 A
tan 2 A
A
if tan A  3 / 4
2
Example 15 :
Find the values of tan
Solution :
A
2  2 x where x  tan A
tan A 
A 1  x2
2
1  tan 2
2
2 tan
Now tan A  3 / 4  A is either in first quadrant (or 2n to 2n 
quadrant
(i.e. from 2n   to 2n 
If A is from 2n to 2n 

2
then
If A is from 2n   to 2n 
 tan
2.
2
) OR in the third
3
)
2

A
A 1
A
 tan  0  tan 
is from n to n 
4
2
2 3
2

3
A
3
then is from n  to n 
2
2
4
2
A
A
 0  tan  3
2
2
EXERCISE
1.

x
x
x
Find sin ,cos and tan in each of the following :
2
2
2
4
1
(1).
(2).
tan x   , x in quadrant II
cos x   , in quadrant III
3
3
1
(3).
tan x  , in quadrant II
4
Prove the following identities:
(1)
cosec 2 - cot 2 = tan 
(2)
1 + tan 2 tan  = sec 2 
(3)
2 cosec 2 = sec  cosec 
(4)
cos4  - sin4  = cos 2
(5)
cot  - tan  = 2cot 2
(6)
cot 2 A 
(7)
cot A  tan A
 cos 2 A
cot A  tan A
(8)
1  cot 2 A
 cos ec 2 A
2cot A
(9)
cot 2 A  1
 sec 2 A
cot 2 A  1
(10)
1  sec

 2cos2
sec
2
(11)
2  sec2 
 cos 2
sec2 
(12)
cos ec 2  2
 cos 2
cos ec 2
cot 2 A  1
2cot A
cos 2
 cot  45   
1  sin 2
2
(13)
A
A

 sin  cos   1  sin A
2
2

(15)
sin 8A = 8sin A cos A cos 2A cos 4A
(17)
cos 2 sin 2

 cos3
sec cosec
2
(14)
2
(16)
1 + cos 4A = 2cos 2A(1 – 2sin2 A)
tan 4 

(18)
cos 4x = 1 – 8 sin x cos x
(20)
(sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0
(21)
cot  
(22)
cosec  (sec  - 1) – cot (1 – cos ) = tan  - sin 
(23)
tan(45 + A)– tan(45 - A) = 2tan 2A
(24)
tan (45 + A) + tan(45 - A) = 2 sec 2A
(26)
cot 3 A 
(28)
sin 3  sin 3 
 cot 
cos3   cos3
(30)
cos 5A cos 2A – cos 4A cos 3A = -sin 2A sin A
(31)
sin 4 cos  - sin 3 cos 2 = sin  cos 2
(32)
4sin A sin(60 + A)sin(60 - A) = sin 3A
(33)
 2
  2

4cos cos 
   cos 
    cos3
 3
  3

(34)
 2

 2

cos  cos 
    cos 
   0
3
3




(35)
cos2 A + cos2 (60 + A) + cos2 (60 – A) = 3/2
(36)
sin2 A + sin2(120 + A) + sin2(120 - A) = 3/2
(37)
(38)
(39)
(19)
4 tan  1  tan 2 

1  6 tan   tan 
2
4
sin 
 cos ec
1  cos 
cot 3 A  3cot A
3cot 2 A  1
sin   sin   sin    
sin   sin   sin    
 cot

2
cot
(25)
sin 3 A cos3 A

2
sin A cos A
(27)
3cos   cos3
 cot 3 
3sin   sin 3
(29)
cos3   cos3 sin 3   sin 3

3
cos 
sin 

2
(cos A – sin A)(cos 2A – sin 2A) = cos A – sin 3A
sin 2 A  cos 2 A 
1  tan A2  2 tan 2 A
1  tan A
2
(40)
sin 4 A 

4 tan A 1  tan 2 A
1  tan A
2
2

4cos 2 A
1  2sin 2 A
(41)
cot 15  A  tan 15  A 
(42)
cot 15  A   tan 15  A  
(43)
tan  A  30 tan  A  30  
(44)
(2cos A + 1)(2cos A – 1)(2cos 2A – 1) = 2cos 4A + 1
(45)
cos2( - ) + cos2( - ) + cos2( - ) = 1 + 2cos ( - )cos( - )cos( - )
(46)
2cos2 (45 - A) = 1 + sin 2A
(47)
2cos 2x cosec 3x = cosec x – cosec 3x
(49)
2tan 2x =
(50)
(cos x + cos y)2 + (sin x – sin y)2 = 4cos2
x y
2
(51)
(cos x – cos y)2 + (sin x – sin y)2 = 4sin 2
x y
2
(52)
1  sin 2 x


 tan 2   x 
1  sin 2 x
4

(54)
(sin3x  sin x)sin x  (cos3x  cos x)cos x  0
(55)
1
1
sin A  2sin 3 A  sin 5 A sin 3 A

 cot 2 A. (56)

tan 3 A  tan A cot 3 A  cot A
sin 3 A  2sin 5 A  sin 7 A sin 5 A
(57)
sin 6
(58)
3A
A
  A   A
4 cos    sin     sin
cos ec
2
2
6 2 3 2
(59)
cos 5 = 16 cos5  - 20 cos3  + 5 cos 
(60)
cos A cos (60 – A) cos(60 + A) = ¼ cos 3A
(61)
cos8 A cos 5 A  cos12 A cos 9 A
 tan 4 A
sin 8 A cos 5 A  cos12 A sin 9 A
(62)
cos3 A  cos3 120  A   cos3  240  A 
4
cos 2 A  3 sin 2 A
1  2cos 2 A
1  2cos 2 A
(48)
cos A cos 2A cos 4A cos 8A =
sin16 A
16sin A
cos x  sin x cos x  sin x

cos x  sin x cos x  sin x
(53)
cos3 sin 3

 2cot 2
sin 
cos 
A
A 3
 cos 6   sin 2 A  4  cos A.
2
2 4
3
cos 3 A
4
(63)
2sin A cos3 A – 2sin3 A cos A =
1
sin 4A
2
(64)
sin 3A cos3 A + cos 3A sin3 A =
3
sin 4A
4
(65)
tan 3 
cot 3 
1  2sin 2  cos 2 


sin  cos 
1  tan 2  1  cot 2 
(66)
2cos  cos cos ( + ) = cos2  + cos2  - sin2 ( + ).
sin 2 3 cos 2 3

 8cos 2
sin 2 
cos 2 
(67)
 3

1  sin 4 A  cot   2 A  cos 4 A  0
 4

(69)
2cos  - cos 3 - cos 5 = 16cos3  sin2 
(70
cos3 ( + ) sin3 ( - ) + cos3 ( + ) sin3 ( - ) + cos3 ( + ) sin3 ( - )
(68)
= 3cos ( + ) cos ( + ) cos( + ) sin( - ) sin( - ) sin ( - )
2.
(71)
cos2 A + cos2 B – 2cos A cos B cos(A + B) = sin2 (A + B).
(72)
tan 3 A
cot 3 A

 sec A cos ec A  sin 2 A
1  tan 2 A 1  cot 2 A
(73)
tan  tan    60  tan  tan    60  tan    60  tan    60   3
(74)
2sin4 - sin 10  +sin2 = 16sin  cos  cos 2 sin 2 3 .
Prove the following numerical equalities (based on last three sections)
(1)
cos 80 + cos 40 – cos 20 = 0
(2)
cos 130 cos 40 + sin 130 sin 40 = 0
(3)
cos 5 – sin 25 = sin 35
(4)
cos 70 cos 10 + sin 70 sin 10 = ½
(5)
sin 65 + cos 65 = 2 cos 20
(6)
sin 78 – sin 18 + cos 132 = 0
(7)
cot 15 + cot 75 + cot 135 – cosec 30 = 1
(8)
(9)
sin 10 sin 30 sin 50 sin 70 = 1/16
1
sin 20 sin 40 sin 80 =
3
8
(10)
tan 40 + cot 40 = 2sec 10
2
(11)
tan 70 + tan 20 = 2 cosec 40
(12)
(13)
tan 6 tan 42 tan 66 tan 78 = 1
(14)
cos 33  cos 57
1
(16)

sin 21  cos 21
2
cos 20  2sin 2 55  1  2 sin 65
2
(15)
(17)
2
 1  cot 60  1  cos30

 
 1  cot 60  1  cos30
cosec 10 - 3 sec10 = 4
1
cos ec10  2sin 70  1
2
3.
(18)
sin 70  8cos 20 cos 40 cos80  2 cos 2 10
(19)
cos 2 73  cos 2 47  cos 73 cos 47 
(20)
tan10  tan 70  tan 50  3
(21)
tan 20 + tan 40 +
3
4
3 tan 20tan 40   3
If sin A + sin B + sin C = cos A + cos B + cos C = 0, prove that
sin2 A + sin2 B + sin2 C = cos2 A + cos2 B + cos2 C = 3/2
ANSWERS
1.
(1).
2 5
5
,
,2
5
5
(2).
6
3
,
, 2
3
3
(3).
8  2 15
8  2 15
,
, 4  15
4
4
Related documents