Download EXERCISES FROM OLD EXAMS FOR CHAPTER P

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
EXERCISES FROM OLD EXAMS FOR CHAPTER P
1) Factor y 4  64
 ( x  y ) 2 (2 z 4 ) 

2) Simplify t he expression 
3
 [ z ( x  y )] 
2
3) If a  3, then | 5  2a | is equal to ?
4) Conjugate of the complex number (6  3i)(3  i) 2 is
1
2
1
3 3
5) If x  y , then the expression ( x - 2 xy  y )  [( x  y) ] simplifies to
2
2
6) Simplify the expression 2[3(4a  b)  2(5a  3b)]  {5[3a  (b  4a)]  b}
7) The coefficient of x 2 y in the product (2 x  y) 2 ( x  y 
8) If A  Bi 
9)
3
23 2

3
3x
) is
y
 125  i 11   4  1
, then A and B are
i6
2 1
2
?
10) Simplify the expression
x  y x 1  y 1

x  y x 1  y 1
11) TRUE /FALSE For all real numbers a and b
3
a 3  b 3  a  b , a  b  a  b , 6 a12b 6  a 2 | b | , (a 1  b 1 ) 1  a  b , 4 a16b 4  a 4 b
12) One factor of 2  4 x  10 x 4  5 x 3 is?
13)
14)
2
3
54
3
4
16
3
16)
2
?
8  (2)( 4)  (10) 1.44
(32)
15)
1
3
3
5
?
64  5 0.00032  ?
p2
2 p 1
 2
?
3p  4p  4 3p  5p  2
2
17) Write the complex number Z 
i 19
in standard form
 2  3i
18) If Z1  x  4i , Z 2  5  2 yi and Z 2  3Z1  5 , then find x and y
19) Write the expression
 2x  2
without absolute value notation if 0  x  1 .
| x|| x2|
20) Rationalize the denominator of
20
3 5
and write it in the form A  B 5
21) Simplify the expression 3x3 8 x 3 y 4  4 y 3 64 x 6 y
22) Evaluate
5
0.00032
 ( x 2 y ) 1 (5 3 x 3 y  2 ) 2 
23) Simplify the expression  2
3
5  2 1 
 5 ( xy) ( x y ) 
24) Expand (2 x  3 y) 3

1
4
where x  0 and y  0
25) A square of side x cm is cut from a rectangle sheet of aluminum as shown below. Write the
remaining area of the shaded portion of the following figure in terms of x and y .
2y
y
x
x
26) Factor x 3  3x 2 y  3xy 2  y 3  ( x  y) 3
27) Factor 15 y  3x  10 y 2  2 xy
28) Find the number k for which the expression 36 x 2  kxy  100 y 2 is a perfect square.
3
2
1
29) Simplify the expression
4
3
x
1
2
1
x
 a 1b  ab 1 

30) Simplify the expression 
2
2
 a b 
31) Simplify the expression
1
n 2  3n n  3

n
n
32) Simplify the expression (  3  4)(  3  4)
33) Which one of the following statements is TRUE?
a)
b)
c)
d)
e)
The smallest odd composite number is 9
The set of irrational numbers is closed under addition
The sum of two composite numbers is a composite
a 2  a for all real numbers
(a  6)  2 y  (6  a)  2 y illustrates the associative property.
34) What is the decimal form of 5.62  10 4 ?
35) TRUE / FALSE
a)
b)
c)
d)
e)
The product of a complex number and its conjugate is a real number.
If m  0 then | m |  m
1 is the only integer that is not prime and not composite.
|  y | y for all real numbers
Every real number is either rational or irrational.
36) The distance between   and 3 is
 3
|   3 |
| 3|
 (  3)
37) TRUE / FALSE
3
 x3  x
16 x 2  4 x
(2 x) 2  2 x
3
64 x 3  4 | x |
38) i 50  i 51  i 52  ?
39) Do the multiplication and write it in the standard form. (3x  5)( 2 x 2  4 x  6)
|x
1
40) Given that 0  x  , write the expression
8
1
|
4
1
1
|x ||x |
8
8
without absolute value
notation.
 (2 y ) y (2 y ) 
41) Simplify t he expression 

 2 1  4
 (2 y ) y

1
0
3
1
2
42) Factor the polynomial 9 x 2  24 xy  16 y 2  100 z 2
2 3
43) Rationalize the denominator
2 3
44) Simplify  3x3 54 x 4  23 16 x 7
45) Simplify the expression
x
1
x3
 2
 2
2 x  1 2 x  7 x  4 x  x  12
46) Conjugate of the complex number
1
(2  i ) 2  8i
47) Which property of equality the following statement illustrates?
If 2x-y = z and z=13, then 2x-y = 13
1 
1
48) Find the coefficient of x y in the expression  x  y 
3 
2
2
49) Simplify the expression
10  2 x
, x0
| x||2 x|
(25) x y
50) Simplify the expression
(125)
1
4
2
1
51) Rationalize the denominator
5 5
2 5
( xy 2 ) 0
x 9 y 3


1
3


1
2
3
52) Simplify the expression (4 x  5 y )( 4 x  5 y )  (2 x  3 y )(3x  2 y )
53) Factor y 6  7 y 3  8
3i 90  9i 92
54) Simplify 89
2i  4i 91
55) Factor x 2  z 2  14 xy  49 y 2
56) Write the complex number in standard form
4  5i
2  3i
xy 1  yx 1
57) Simplify the expression 2 1
x y  y 2 x 1
58) Simplify the expression 123 4  3
59) Simplify the expression
20
16
5
3
 2
2 x  3x  2 2 x  x  1
2
60) Which one is irrational?

22
7
(0.23) 2
2 8
0.73
25
61) Write the expression without absolute value notation. | 2 x |  | 4 x |  || 6 x || x  1
62) Calculate 8  5[3x  4(2 x  3)] 
5
6
5
2
63) Simplify the expression
2 x y
1
3
4x y
1
5
7
10
64) If A  {x | x  1}  {x | x  2} and B  {x | 1  x  3}  {x | 1  x  5} , then
the set A  B is equal to
65) Imaginary part of the complex number
5  3i
is
4  2i
66) Find the coefficients of y 2 and y 3 in the multiplica tion (5y 3  3 y  4)(3 y 2  4 y  7)
67) Factor 4 x 3  4 x 2 y  9 xy2  9 y 3
68) Write the complex number (3  2  32 )( 2  3  8 ) in the standard form.
69) Simplify the expression
x 2  y 2
x 1  y 1
70) Simplify the expression
5
10
 2
x  x x 1
2
6x 2
4x 2  4x  1 2x  1
71) Simplify the expression


3x  6
x2
x3
72) Factor 36 x 3 (9 x 3  8) 3  (9 x 3  8) 4
73)
4
32  4
2
8
74) Calculate
?
(0.93  10 8 )(5.2  10 7 )
and write it in scientific notation.
(2.6  10 10 )(3  1015 )
75) Write the complex number (i ) 47   9  4 in standard form.
76) Calculate
 3 2  6  (3) 2  | 3 |
2  5 (3) 5
77) Write without absolute value | x  4 |  | 2x  3 |
 3  x  2
78) Find the coefficient of a 2 b in the expression (a  2b) 2 (3a  b)
79) Rationalize the denominator
3 2
2 3 3 2
 (ab) 1 c 2
80) Simplify the expression 
 2 1 2
 (ac ) b



2
81) Simplify the expression
y2  6y  9
y3
 3
3
y  27
y  3y 2  9 y
82) Simplify the expression
1  (1  x) 1
x 1  ( x  1) 1
83) Factorize x 4 n  1 completely.
84) Factorize 5 xy  20 y  15 x  60
85) Write the complex number
4i
1

in standard form
3i 3i
86) Calculate | 2   |  (3) 2  | 6  2 | 3 (3) 3
87) Simplify
5
3
8x 2
88) Write the number 0.000002015 in scientific notation
89) Simplify the expression 3x 2  5[4 x 2  6(3x  1)]
90) If A  {x | x is a composite numer  11} and
B  {z | z  2 y  1 , where y is an integer wi th  1  y  5}, then A  B  ?

( 2 ) 0 9  2 x  2 y
91) Simplify the expression 
10

 (81)  2 x  4 y 3
2
3
92) Factor 18 x 2  24 xy  8 y 2  6 x  4 y
93) Factor completely x 6  63 x 3  64
94) Simplify  3x3 54 x 4  23 16 x 7
95) Calculate (23 3  3 2 )( 43 9  23 6  3 4 )
96) Rationalize the denominator
97) Simplify
2 3 3 2
6( x  3) 1  2( x  1) 1
x( x  1) 1  3( x  3) 1
3 2




1
2
(21  10 8 )(160  10 3 )
in the scientific notation.
(4  10 4 )(700  10 6 )
98) Write the number
99) If  3  x  1 , then write the expression | 3  x |  | 2  2 x |  ||  x || without absolute value
2
100) Simplify
1
1
1
(2 x 3 y 2 )(3 x 6 y 3 )
17
6
x y

7
6
101) Rationalize the denominator
102) Simplify
3 5  2 10
3 5  2 10
x
x 2  2 x ( x  2)( x  3)


x5
x5
( x  3) 2
5
3
1
103) Factor 3x 2  9 x 2  6 x 2
104) Factor x 3 y 2  9 x 3  8 y 2  72
105) Write the complex number
106) Simplify
xy 1  x 1 y
xy 1  1  2 x 1 y
 2  8  i7
in standard form.
1 i
Related documents