Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Achievement Standard 90638 Manipulate real and complex numbers, and solve equations 3.4 Achievement Questions 2 1. Evaluate 64 3 2. Simplify a) 64a c3m c 4 b) c 2 m 5 64 3. Simplify as much as possible a) 5 4m 4 2 8 m 4. Factorise completely a) 12a 48a3 c) 5 x 2 29 x 6 5. Simplify a2 1 a 2 2a 1 6. Simplify 3x 1 2 x 1 4 3 b) 2 x 1 2 x 1 2 2 c) 5 a a 2 a 1 b) x 2 5 x 24 d) 4 x 8 xy 2 y 1 1 1 x 1 x 7. Simplify 8. Solve the quadratic equations: a) x 2 x 30 0 b) 5 x 2 3 x 0 c) 4 x 2 49 d) 3 x 2 5 x 3 0 e) x 4 2 3x 1 b b2 4ac 9. Use the quadratic formula x to solve the equation 2a 5x2 2 x 1 0 10. Show that the equation x 2 x 5 0 has no real solutions. 11. The sum of the squares of two numbers is 369. If one number is three more than the other, find the two numbers. 12. A right-angled triangle has sides 2 x 1 , x 6 and x 1 . Find the value of x. 2x 1 is the hypotenuse. Algebra 2009 1 90638 x a b 2 in the form a x b c 13. By completing the square, write x 2 8 x 12 in the form 14. By completing the square, write 2 x 2 12 x 13 x 3 15. Find the remainder when 2 x 3 x 8 is divided by 16. Show that x 4 is a factor of x 4 8 x 2 24 x 32 17. Use long division to divide x3 2 x2 3x 6 by x 2 18. Solve the cubic equations a) x 3 27 b) 2 x3 16 0 d) x3 x 2 0 e) x3 2 x 2 7 x 4 0 19. Write as a single surd 32 2 8 6 2 20. Write as a single surd 25 p 2 q 3 p q 21. Expand and simplify a) 2 3 3 2 b) 2 6 2 3 6 2 3 c) 3 x 3 12 x 0 f) x3 7 x 6 0 22. Rationalise the denominator of 9 2 3 2 a) b) 2 3 3 2 23. Write 6 1 in the form a b 6 6 2 24. Write in index form log5 125 3 25. Write in log form 34 81 26. Evaluate log 4 64 27. Find x if log 2 x 7 28. Write as a single logarithm 3log 2 2 log 3 2 log 6 29. Write as a single logarithm 2 log10 3 30. Simplify as much as possible 3log2 4 log2 16 Algebra 2009 2 90638 1 31. Simplify log log x x 32. Solve ln 2 x ln 6 4 33. Solve log x3 x log x log 2 x 34. Solve 53 x1 200 35. Solve e2 x 1 250 36. Solve: a) ln 3x 4 2.6 b) log10 3x 1.4 d) log5 30 x log5 x 3 2 c) log 2 4 x 7 e) log6 3x 5 1.1 37. Two complex numbers are: u 5 3i, v 4 2i . Find: a) u v b) 5v c) u f) uu g) v 2 h) u 3v d) uv e) u v 38. Simplify i 7 2 in the form a bi 3i 40. Show the following complex numbers on an Argand diagram. a) 4 2i b) 3 i c) 3i 39. Write 41. If two complex numbers are given by u 3 i, v 2 4i , show the sum z u v on an Argand diagram. 42. For the complex number z 12 5i, find z and arg z . 43. Convert w 3 2i to polar form. 44. Show 3cis on an Argand diagram. 45. Show 2cis on an Argand diagram 3 46. For the two complex numbers u 12cis 80 , v 4cis 25 find: a) uv Algebra 2009 b) u v 3 90638 47. Convert 20cis to rectangular form. 6 48. a) Use de Moivre’s Theorem to simplify 3cis 2 6 b) Write 3cis in the form a bi 3 5 49. A complex number is z 3 2i a) Convert z to polar form 4 b) Use this result and de Moivre’s Theorem to find 3 2i in the form rcis 50. Show the solutions of z 3 1 on an Argand diagram. 51. Simplify 5 i 3 5 i 3 52. Write 2cis as a complex number in rectangular form, a bi 3 4 3 53. If u 5cis and v 3cis , find uv, leaving the answer in the form rcis 4 2 Merit questions 1. Solve for x: 3x 5 x 1 2. Solve the equation 3. Solve x 2x 1 x 4 1 2 1 x 4. Show that the function f ( x) x3 x 2 2 x 4 has no turning points. 5. If 2i is a root of 2 x3 ax 2 8x 12 0 , what is the value of a. 6. Write down and simplify the cubic equation which has solutions 2, 2i, 2i . 7. The cubic equation p( x) x3 3x 2 4 x 12 0 has one real solution. a) Calculate p(1), p(2), p(3) to find the real solution. b) Use long division to find the other solutions. 8. Find all the solutions of x3 5 x 2 17 x 13 0 Algebra 2009 4 90638 9. Find the square roots of 12 5i by solving z 2 12 5i 10. Find the fourth roots of 16. Show these solutions on an Argand diagram. 11. Show that if w 1 i, then w4 4 12. Solve the equation z 4 6 8i by converting to polar form and using de Moivre’s Theorem. 13. Find all the solutions of the equation x3 x 2 3x 5 0 given that one solution is 1 2i . 14. One root of the equation z 3 7 z 2 16 z k 0 is 3 i . Find the value of k and the other two solutions. 15. Solve the equation 40e6 x 200e 2 x 16. Solve x 2 2 x 6 0 , giving the solutions in the form x a b c i 17. Solve the following equation for x in terms of p. 4 ln x 2 ln ln 2 x p 1 18. Solve the following equation for x in terms of k. xk xk 4 19. Solve z 3 27 . Leave the answers in polar form. 20. Solve z 3 27i . Answer in polar form. 21. Solve for x, giving the answer in terms of a: a 2 x 2 5ax 4 0 22. Solve for x, giving the answer in terms of a: 3 xa 2 xa 0 23. Solve for x, giving the answer in terms of a: a x 1 2 x 1 0 24. Solve for x, giving the answer in terms of a: 43 xa 2x a 25. Solve for x, giving the answer in terms of a: 32 x 1 2 x a Excellence questions x 1. Simplify as much as possible 1 1 1 Algebra 2009 5 x y 90638 x3 x 2 x 2 x 2. Show that 3. Show that 1 cos i sin 2 cos 2 i sin 2 4. Two complex numbers are given by u cos i sin , and v sin i cos Find the product uv in its simplest form. 5. Show that if z cis , then z n z n 2cos n . Complete working must be shown. 6. Find the complex number z a bi which satisfies the equation z 2 3i 11 16i i 7. Prove that cos i sin 2 cos i sin cos i sin 8. If z 2 i , show that z 3 5 z 2 9 z 5 0 9. A train moving at r km/hr can cover a given distance in h hours. By how many km/hr must its speed be increased in order to cover the same distance in one hour less time? 10. A pilot flies a distance of 600km. The pilot could fly the same distance in 30 minutes less time by increasing the plane’s average speed by 40 km/hr. Find the actual average speed. You must write an equation and solve it. 11. The diagonal of a rectangle is 85cm. If the short side is increased by 11cm and the long side is decreased by 7cm, the diagonal remains the same length. Find the dimensions of the original rectangle. 12. The amount of money in a fund between years 4 and 20 follows the formula y 60log10 x a b , where y is the amount in the fund in thousands of dollars, x is years and a, b are constants. After 4 years, the fund holds $20000 and after 13 years the fund holds $80000 Find the values of a and b. 13. If w is a complex root of 1, show that; a) ww 1 Algebra 2009 6 90638 b) w2 w c) 1 1 1 w w d) w w 1 1 14. Expand and simplify 3x 1 5 2 x 3 10 15. Write down the first three terms in the expansion of 16. Find the term in x 6 in the expansion of 3x 2 1 8 12 2 17. Find the constant term in the expansion of x 2 x Sketch the locus for each of the following equations on an Argand diagram. 18. z 5 19. z 4 2 20. z i 3 21. z 3 4i 5 22. z z i 23. z 1 z i 24. Show the region which satisfies the inequation z 2 4 25. Find all the solutions of Algebra 2009 z 2 1 4 , where z is a complex number. 2 7 90638 Answers: Achievement 1. 16 2. a) 8a 32 b) c m1 3. a) 22m 36 b) 8x c) a 3 6a 2 4a 5 4. 12a 1 2a 1 2a b) x 8 x 3 c) 5x 1 x 6 d) x 2 4 y a 1 x7 2x 6. 7. a 1 1 x2 12 8. a) 6, -5 b) 0, -0.6 c) 3.5, -3.5 d) 2.14, -0.468 e) 9.405, 1.595 2 9. 0.29, -0.69 10. b 4ac 19 0 so no solutions 5. 11. 15, 12 or -12, -15 14. 2 x 3 5 2 17. x 2 3 18. a) 3 19. 2 2 13. x 4 4 2 12. 9 16. f (4) 0 , so is a factor 15. –59 b) 2 c) 0, 2, -2 d) 0, 0, -1 20. 2 p q 21. a) 6 4 3 3 6 b) 3 6 6 2 25. log3 81 4 26. 3 22. a) 23. 4 3 6 2 27. 128 24. 53 = 125 29. log10 300 30. 2 31. 0 33. 1, 1 34. 0.764 35. 3.26 36. a) 3.15 b) 8.37 c) 32 d) 15 5– 1 1 2 3 4 1– 1 2 3 4 5 37. a) 1 5i b) 20 10i f) 34 38. i g) 12 16i 39. 0.6 0.2i 40. a) e) 4.059 e) h) 7 3i Im 2 1 4– 2 1 2 3 1 1– 5 2 3 4 5 6 1 2 3 4 2 14 22i 20 Im 40. b) 3 – 5– 4– 3– 2– 1 – 1 1 – 1 – 1 28. log 2 32. 4.55 d) 26 2i 5 4 5– 1 1 2 3 4 1– 5 2 3 4 5 1 2 3 4 1– 3 2 1 2 c) 5 3i 1– 5 2 1 2 3 4 f) –1, -2, 3 e) 1, 1, -4 b) –6 1 2 3 4 1 2 Real – 2 5 Real – 3 41. Im 40. c) 5 4 3 4 3 2 1 Im 2 1 – 5– 4– 3– 2– 1 – 1 1 2 3 4 5 Real 42. 13, 157.4º Algebra 2009 – 5– 4– 3– 2–– 11 – 2 1 2 3 4 5 6 Real 43. 13cis(33.7) 8 90638 Im 4 3 2 (44) 1 1 2 (45) 1 – 4– 3– 2– 1 – 1 1 2 3 4 Real 46. a) 48cis(105º) b) 3cis(55º) 47. 17.32 + 10i 48. a) 729cis(3 ) b) 121.5 - 210.4i 49. a) 13cis(146.3) b) 169cis 134.8 50. Im 1 – 2 1 Real – 1 – 1 7 53. 15cis 4 52. 8 8 3i 51. 8 Answers: Merit 3 1 2 1 2 3 1. 2, 3 2. 12 3. 4 2 2 4. f ( x) 3x 2 x 2 b 4ac 20 < 0, so no solutions, so no turning points. 5. 3 6. x3 2 x 2 2 x 4 7. a) –10, -8, 0 so 3 is real solution b) 2i, -2i 8. 1, 2 3i, 2 3i 9. 3.61cis 11.3 , 3.61cis 168.7 10. –2, 2, 2i, -2i Im 3 2 1 – 3 – 2 – 1 – 1 1 2 3 Real – 2 – 3 Algebra 2009 9 90638 11. w2 2i, w4 w2 w2 2i 2i 4i 2 4 12. 1.78cis 103.3 , 1.78cis 13.3 , 1.78cis 76.7 , 1.78cis 166.7 13. 1 2i, 1 2i, 1 14. k 10, 3 + i, 1 4 1 p 17. x 16. 1 5 i 19. 3, 3cis , 3cis 3 3 4 1 13a 21. , 22. 5 a a Answers: Excellence 15. 0.402 64 k 2 16 5 20. 3cis , 3cis 6 6 a2 4 23. 2 a 4 18. x 3a 24. 5 , 3cis 2 25. ln 2a 3 ln 4.5 1. x y 2. LHS x 3 x 3 2 x x 2 x 3 2 1 2 2 x 2 x 2 x 3. Multiply out bottom line and simplify. Multiply top and bottom by conjugate and simplify. 4. i 5. 1 n z n z n cos i sin n cos i sin cos i sin n cos n i sin n 1 cos n i sin n cos n i sin n cos n i sin n cos n i sin n 2 cos n 1 6. a 5, b 2 7. multiply LHS by complex conjugate of the denominator. 8. substitute and simplify. 2 i 52 i 92 i 5 2 11i 5 3 4i 18 9i 5 3 2 2 11i 15 20i 18 9i 5 0 r h 1 10. 200 km/hr. 9. Algebra 2009 10 90638 11. 40cm, 75cm 12. a 3, b 20 4– 2 – 4 2 4 1 3 4 5 6 2 1 3 5 6 2 1– 6 3 5 2 4 6 8 10 1 2 3 4 5 1 3 2 13. Write w as cis i and simplify or 2 2 3 14. 243x5 405 x 4 270 x3 90 x 2 15 x 1 15. 1024 x10 15360 x9 103680 x8 16. 1512x 6 17. 126720 y 18. –0 2 4 6 – 10 2 4 6 8 y 6 5 4 3 2 1 19. 4 2 – 6 – 5 – 4 – 3 – –2 – 11 1 2 3 4 5 6 x – 2 – 3 – 4 – 5 – 6 2 4 6 – 2 – 4 y y 20. 10 0.5 1 2 4 6 8 – 10 0.5 1 2 4 6 8 2– 10 4 6 8 10 2 4 6 8 6 10 21. 4 8 2 6 – 6– 4– 2 – 2 2 4 6 x 4 2 – 4 – 6 – 10– 8– 6– 4– 2 – 2 y 22. 10 x 8 4 x y 1 23. 0.5 6– 6 2 4 2 4 2– 10 4 2 4 6 8 – 10– 8– 6– 4– 2 2 2 4 6 8 10 x – 0.5 – 1 10 8 6 4 2 – 10 – 8– 6– 4–– 22 – 4 – 6 – 8 – 10 2 4 6 8 10 x y 24. 6 4 2 – 10 – 8 – 6 – 4 – 2 – 2 25. 2 3, 3, i, i 4 x – 4 – 6 Algebra 2009 11 90638