Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
1 CHAPTER: INTEGRATION Contents 1 Integration as the Reverse of Differentiation 2 Standard Integration Formulae 2.1 Integration of trigonometric functions 2.2 Integration of exponential function 2.3 Integration of Inverse Trigonometric Functions 3 Computation of Definite Integrals 4 Integration by Partial Fractions 5 Integration by Substitution 6 Integration By Parts 7 Miscellaneous Examples 1 Integration as the Reverse of Differentiation The process of finding an expression for y in terms of x from the gradient function, dy , is called integration. dx It reverses the operation of differentiation. 1 We know that if y = x2 + C where C is an arbitrary constant 2 dy Then =x dx 1 And if y = x2 2 dy Then, again, =x dx 1 Hence, to integrate x with respect to x, we write, x dx = x2 + C where C is an arbitrary constant. 2 n+1 x In general, xn dx = +C provided n+ 1 0 and C is an arbitrary constant. n+1 Remark : Geometrical Interpretation of Integration y y = x3 + 15 dy Consider graphs with gradient function, = 3x2. y = x3 dx 15 d Since (x3 + C) = 3x2 where C is an arbitrary constant, y = x3 - 10 dx dy thus the equation = 3x2 represents the family of x 10 dx curves y = x3 + C, some of which are shown in the diagram. A particular member of this family of curves is specified if we are given one point on the curve. Then the value of C can be calculated using the given point, and thus the equation of the curve obtained. 2 Standard Integration Formulae Adx = Ax + C A Axn dx = x n+1 + C n+1 (Ax + B)n + 1 (Ax + B)n dx = +C A(n + 1) Example 2.1 [a) a) 3x dx b) 13 dx x 3 2 1 1 3 1 1 x + C b) - 2 + C c) (3x – 8)7 + C d) - ( - x )8 + C] 2 2x 21 8 2 3 = = 6 c) (3x - 8) dx = 1 1 d) ( - x)7 dx = 2 3 2 2.1 Integration of trigonometric functions As integration is the reverse of differentiation, we have the following results. d Since sin x = cos x then, cos x dx = sin x + C dx d cos x = sin x sin x dx = - cos x + C dx d tan x = sec2 x sec2 x dx = tan x + C dx d sec x = sec x tan x sec x tan x dx = sec x + C dx d cosec x = cosec x cot x cosec x cot x dx = cosec x + C dx d cot x = cosec2 x cosec2 x dx = cot x + C dx In general, f ‘ (x) sin [f(x)] dx = cos [f(x)] + C f ‘ (x) cos[f(x)] dx = sin [f(x)] + C sec x dx = ln sec x + tan x + C. 1 1 3 1 sin3x Example 2.2 [a) 3 tan x + C b) - 4 cos 4 + C c) - 2 cot (2x + 4 ) + C d) - 5 cosec 5 + C e) 3 – 3cosx + C] a) 3 sec2 x dx = b) sin 4 d c) = cosec2 (2x + 3 ) dx = 4 d) cosec 5 cot 5 d = e) (cos 3x + 3 sin x) dx = 2.2 Integration of exponential function In general, f ‘ (x) e f(x) dx = ef(x) + C ax dx = Specifically, ex dx = ex + C, Aex dx = Aex + C 1 e (Ax + B) dx = e(Ax + B) + C A ax +C ln a f ' (x) dx = ln f(x) + C f(x) (f(x)) n f ‘ (x) dx = (f(x))n + 1 +C n+ 1 2 1 2 dx = 1 ln a x + C 2a a + x a x 1 dx = lnx + C x 1 1 dx = ln Ax + B + C Ax + B A 3 2 3 2x 1 3 Example 2.3 [a) - e – 5x + C b) + C c) 4 ln x + C d) ln 2x + 5 + C e) - ln 4 – 2x+ C] 5 2 ln 3 2 2 a) 2e –5x dx = b) 32x dx = c) 4 dx x = d) 1 dx 2x + 5 = e) 3 dx 4 - 2x = 2.3 Integration of Inverse Trigonometric Functions d f(x) f ' (x) Since (sin-1 )= 2 , x< a then, dx a a -[f(x)]2 d f(x) a f ' (x) (tan -1 )= 2 dx a a + [f(x)]2 2f ' (x) 2 dx = sin-1 f(x) + C a a -[f(x)] 2a f ' (x) 2 dx = 1 tan –1 f(x) + C a a a + [f(x)] Variations of above formulae 1 2 dx = sin – 1 x + C 1-x 1 2 dx = tan –1 x + C 1 + x 21 2 dx = sin-1 x + C a a -x 2 1 2 dx = 1 tan –1 x + C a a a + x f ' (x) 2 dx = sin – 1 [f(x)] + C , x < 1 1 - [f(x)] f ' (x) 2 dx = tan –1 [f(x)] + C 1 + [f(x)] Example 2.4 [a) sin a) 1 dx = 16 - x2 b) 1 dx = 9 - 4x2 c) 1 25 + 16x2 dx = -1 x 1 2x 1 4x + C b) sin –1 ( ) + C c) tan –1 ( )+ C ] 4 2 3 20 5 4 Example 2.5 [a) a) 7x4 3 4 + 2x2 + 4 + C b) – 3 cos x + x 3/2 + C c) 4 ln x - 3tan x + C ] 4 4x 3 ( 7x3 + 4x - 35 ) dx = x b) ( 3 sin x + 2 x ) dx = c) 2 4 - 3x sec x dx = x Example 2.6 [a) tan x – x + C b) a) tan2 x dx = b) cos2 x dx = c) sin 3x cos 2x dx = 1 1 1 1 x + sin 2x + C c) cos 5x - cos x + C ] 2 4 10 2 5 Example 2.7 d Show that (x sin x) = x cos x + sin x. Hence find dx Solution x cos x dx. [x sin x + cos x + C] Example 2.8 Find sin2 x cos x dx and hence Solution cos3 x dx. 1 1 [ sin3 x + C, sin x - sin3 x + C ] 3 3 6 (f(x))n + 1 +C ] n+ 1 2 (ln x)2 c) (1 + ex)3/2 + C d) +C ] 3 2 Example 2.9 [Using formula : (f(x)) n f ‘ (x) dx = (1 + x4)4 tan4 x + C b) +C 16 4 a) x3 (1 + x4)3 dx = [a) b) sec2 x tan3 x dx = c) ex 1 + ex dx = d) ln x dx = x Example 2.10 [Using formula : [a) ln 1 + sin x + C b) a) cos x dx = 1 + sin x b) x 2 dx = 1-x c) xe dx = e + 4 d) tan x dx = x f ' (x) dx = ln f(x) + C ] f(x) 1 ln 1 – x2 + C c) ln ex + 4 + C d) – ln cos x + C ] 2 7 3 Computation of Definite Integrals Suppose f(x) is the integrand and F(x) is the anti-derivative of f(x). Then, the definite integral of f(x) between b b two limits x = a and x = b is given by: f(x)dx = F(x)a = F(b) F(a). a Some properties of Definite Integrals a a) f(x)dx = 0 a b b) a f(x)dx = - f(x)dx a b c) b b kf(x)dx = k f(x)dx where k is a constant a b d) a b b {f(x) + g(x)}dx = f(x)dx + g(x)dx a a b c c e) f(x)dx + f(x)dx = f(x)dx a b a a Example 3.1 1 Evaluate a) x2dx 0 Solution e 1 b) dx x 1 /4 c) ( 2cos x + sec2 x)dx 0 1 [ a) b) 1 c) 2 ] 3 8 4 Integration by Partial Fractions In this section, we shall consider integrals of the form f(x) (x - a)(x - b) dx. 1 1 a x [Recall : 2 2 dx = 2a ln a + x + C from page 2] a x In this case, simplify the expression using partial fractions, then integrate. Example 4.1 Find 1 1 x-2 dx. [ ln +C] 3 x+1 (x - 2)(x + 1) Solution Example 4.2 Find 23x + 5 dx. x + x - 12 Solution [ ln (x – 3)2 ( x + 4) + C ] 9 Example 4.3 Find 1 dx. (x + 1)(x2 + 2x + 2) [ ln x+1 +k] x2 + 2x + 2 Solution Example 4.4 Find x-4 x-1 1 dx [ ln + +C ] 2x + 1 x-1 (x - 1)2(2x + 1) Solution 10 5 Integration by Substitution dy = f(x). dx dy dy dx dy dx By Chain Rule, we know = . = f(x) du dx du du du Let y = f(x) dx. Then Integrating this equation with respect to u, we have Hence, when simplifying an integral 1. Express f(x) in terms of u, dx 2. Replace dx by du. du f(x) dx Note: When the integrand contains the following function: a) a2 - x2 then substitute x = a sin . b) a2 + x2 then substitute x = a tan . 2 2 c) x - a then substitute x = a sec 1 1 d) then substitute tan x = t A sin x + B cos x + C 2 Example 5.1 Find 10 (2x + 4)4 dx Solution [(2x + 4)5 + C ] dx du. du by a change to a new variable u, we must y= f(x) . where a is a constant. 2t 1 - t2 2t sin x = , tan x = , 2 , cos x = 1+t 1 + t2 1 - t2 11 Example 5.2 1 Find sin3 2x cos 2x dx. [ (sin 2x)4 + C ] 8 Solution Example 5.3 Find x 2x - 1 dx. Solution [ 1 (2x – 1)3/2 (3x + 1) + C ] 15 12 Example 5.4 4 Find d . 3 + 5 cos 2 + tan 2 [ ln +C] 2 - tan 2 Solution Example 5.5 Find 1 dx. 1 + sin x + cos x Solution [ln 1 + tan x +C ] 2 13 Example 5.6 Find a) 1 2 3/2 dx (9 - x ) Solution 1 b) dx x x2 - 4 [ a) x 1 x + C b) sec-1 + C] 2 2 9 9 - x2 14 Example 5.7 3 9 Show, by using the substitution x = 3 sin , that 9 - x2dx = 4 . 0 Solution Example 5.8 ln 2 1 Find dx 1 + ex 0 Solution [ ln 4 ] 3 15 6 Integration By Parts If u and v are functions of x, then by product rule for differentiation: Integrating, we get Rearranging, we get d dv du (uv) = u + v . dx dx dx dv du +v )dx. dx dx dv du = u dx + v dx. dx dx dv du u dx = uv - v dx dx dx uv = (u b b dv b du For definite integrals, the rule for integration by parts becomes u dx = [ uv ] a - v dx dx dx a a Example 6.1 Find x cos x dx. [x sin x + cos x + C ] Solution Example 6.2 Find a) x2 ex dx Solution b) x ln x dx [a) x2 ex – 2xex + 2ex + C b) x2 x2 ln x +C] 2 4 16 Example 6.3 Find x (ln x)2 dx. [ x2 x2 x2 (ln x)2 - ln x + +C ] 2 2 4 Solution Example 6.4 Find ln x dx. Solution [x ln x – x + C] 17 Example 6.5 Find ex cos x dx. 1 C [ ex (sin x + cos x) + ] 2 2 Solution Example 6.6 e Find a) ln x dx 1 Solution /3 b) x sin 3x dx 0 [ a) 1 b) ] 9 18 7 Miscellaneous Examples Example 7.1 (AJC 98/1/11a) x+2 1 Integrate 2 with respect to x. [ ln x2 + 2x + 2 + tan-1 ( x + 1) + C ] x + 2x + 2 2 Solution Example 7.2 (CJC 96/1/7) Find Solution a) x tan -1 x dx b) x dx x +1 2 [a) 1 2 1 (x + 1)tan – 1 x - x + C b) 2 2 x2 + 1 + C ] 19 Example 7.3 (CJC 96/1/14a) Find x cos 2x dx. Hence, or otherwise, find x cos2 x dx. 1 1 1 1 1 [ x sin 2x + cos 2x + C , x sin 2x + cos 2x + x2 + C ] 2 4 4 8 4 Solution Example 7.4 (NJC 2000/1/15b) 2x - 4 Let f(x) = 2 x -x+4 i) Prove that x2 – x + 4 is always positive for all real values of x. ii) 2x - 4 Evaluate 2 dx x -x+4 iii) 2x - 4 Hence, evaluate 2 dx , correct to 3 decimal places. x -x+4 4 1 6 15 2 1 [ii) ln (x2 – x + 4 ) tan –1 ( x)+C 15 15 15 Solution iii) 0.575] 20 SUMMARY (Integration) Trigonometric formula, cos x dx = sin x + C sin x dx = - cos x + C sec2 x dx = tan x + C In general, Exponential and logarithmic formula In general, f ‘ (x) e f(x) dx = ef(x) + C ax dx = sec x tan x dx = sec x + C cosec x cot x dx = cosec x + C cosec2 x dx = cot x + C f ‘ (x) sin [f(x)] dx = - cos [f(x)] + C f ‘ (x) cos[f(x)] dx = sin [f(x)] + C Specifically, ex dx = ex + C, Aex dx = Aex + C 1 e (Ax + B) dx = e(Ax + B) + C A ax +C ln a f ' (x) dx = ln f(x) + C f(x) (f(x)) n f ‘ (x) dx = 1 dx = lnx + C x 1 1 dx = ln Ax + B + C Ax + B A (f(x))n + 1 +C n+ 1 Inverse Trigonometric formula, 2 1 2 dx = 1 ln a x + C 2a a + x a x 2f ' (x) 2 dx = sin-1 f(x) + C a a -[f(x)] 2a f ' (x) 2 dx = 1 tan –1 f(x) + C a a a + [f(x)] Variations 1 2 dx = sin – 1 x + C 1-x 1 2 dx = tan –1 x + C 1 + x 21 2 dx = sin-1 x + C a a -x 2 1 2 dx = 1 tan –1 x + C a a a + x f ' (x) 2 dx = sin – 1 [f(x)] + C , x < 1 1 - [f(x)] f ' (x) 2 dx = tan –1 [f(x)] + C 1 + [f(x)] Integration By Substitution dx y= f(x) .du du. 1. Express f(x) in terms of u, dx 2. Replace dx by du. du Note: When the integrand contains the following function: a) a2 - x2 then substitute x = a sin . b) a2 + x2 then substitute x = a tan . 2 2 c) x - a then substitute x = a sec 1 1 d) then substitute tan x = t A sin x + B cos x + C 2 where a is a constant. 2t 1 - t2 2t sin x = , tan x = , 2 , cos x = 1+t 1 + t2 1 - t2 Integration By Parts dv du u dx = uv - v dx dx dx “An optimist is a person who sees a green light everywhere, while the pessimist sees only the red stop-light. But the truly wise person is colour blind.” Albert Schweitzer