Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
4-3: TRIGONOMETRIC FUNCTIONS ON THE UNIT CIRCLE Precalculus Mr. Gallo ANGLES AND THE UNIT CIRCLE Trig functions of angles are used to describe coordinates y 1 To find the coordinates of P: 1.Draw height of triangle back to x-axis (creates reference angle, ) 2.Hypotenuse has length of 1 unit, height = y and base = x , 3.Use trig functions to find x and y y x sin cos x 1 1 sin y cos x 4.Rewrite the coordinates of P as: cos , sin 1 FINDING COSINE AND SINE OF QUADRANTAL ANGLES Quadrantal Angles Terminal side of angle falls on the x- or y-axis 3 0 0 , 90 , 180 , 270 , 360 2 2 2 Angles Coordinates 0,1 0 1, 0 1, 0 90 180 0, 1 270 0 2 3 2 360 2 1, 0 0,1 1, 0 0, 1 1, 0 FINDING EXACT VALUES OF COSINE AND SINE Use special right triangles and trig functions to calculate the coordinates. To find the coordinates of P: 1.Draw height of triangle back to x-axis (creates reference angle, 30°) y 2.Hypotenuse has length of 1 unit, height = y and base = x , 3.Use trig functions to find x and y 1 1 3 1 2 x 30° cos 30 2 3 sin 30 2 1 1 2 3 1 cos 30 sin 30 2 2 4.Rewrite the coordinates of P as: 31 , 2 2 2 FINDING EXACT VALUES OF COSINE AND SINE Use special right triangles and trig functions to calculate the coordinates. To find the coordinates of P: 1.Draw height of triangle back to x-axis (creates reference angle, 60°) 2.Hypotenuse has length of 1 unit, height = y and base = x 3.Use trig functions to find x and y 3 1 x sin 60 2 cos 60 2 1 1 y , 1 60° 1 2 3 2 3 1 sin 60 2 2 4.Rewrite the coordinates of P as: 1 3 , 2 2 cos 60 FINDING EXACT VALUES OF COSINE AND SINE Use special right triangles and trig functions to calculate the coordinates. y , 1 45° 2 2 2 2 To find the coordinates of P: 1.Draw height of triangle back to x-axis (creates reference angle, 45°) 2.Hypotenuse has length of 1 unit, height = y and base = x 3.Use trig functions to find x and y 2 2 x sin 45 2 cos 45 2 1 1 2 2 sin 45 cos 45 2 2 4.Rewrite the coordinates of P as: 2 2 , 2 2 3 REFERENCE ANGLES Can be used to find the values of any angle . Always drawn back to -axis What are the coordinates of a 135° angle? 1. Create a reference angle between the terminal side of the angle and the -axis 2. 180° 135° 45° so the coordinates are the same as the triangle formed by a 45°angle. 3. y , 1 2 2 , 135° x 2 2 Complete Guided Practice 3A-3C p.244 3A. 3B. 60 3C. 30 4 SIGNS OF TRIGONOMETRIC FUNCTIONS y • Look at the sign of the and coordinates in each quadrant • Remember and , , , , x Quad I Quad II Quad III Quad IV sin cos 4 COMPLETE UNIT CIRCLE Use reference angles to complete the other quadrants. FINDING TANGENT Remember: tan opp y sin adj x cos y , 1 45° x What is the tan 45° ? 2 sin 45 2 2 tan 45 2 1 cos 45 2 2 2 2 5 SIGNS OF TRIGONOMETRIC FUNCTIONS y • Look at the sign of the and coordinates in each quadrant • Remember , , , , x Quad I Quad II Quad III Quad IV sin cos tan Homework: p.251 #9, 10, 13-31 odd, 41 6 SIX TRIGONOMETRIC FUNCTIONS ON THE UNIT CIRCLE Sine, Cosine and Tangent can be used to find the reciprocal trigonometric functions: Find the following: cot 210 3 cot 210 2 3 1 2 7 4 7 1 2 sec 4 2 2 sec TRIGONOMETRIC FUNCTIONS OF ANY ANGLE Apply concept of unit circle to finding coordinates of circle of any size radius: 7 EVALUATING TRIGONOMETRIC FUNCTIONS GIVEN A POINT Let 4,3 be a point on the terminal side of an angle in standard position. Find the exact values of the six trigonometric functions of r x2 y2 4 2 32 25 5 sin y 3 r 5 cos x 4 r 5 tan y 3 x 4 csc r 5 y 3 sec r 5 x 4 cot x 4 y 3 Complete Guided Practice 1A-1B p.242 3 4 3 1 5 2 5 1A. sin = cos = tan = tan = 1B. sin = cos = 5 5 4 2 5 5 5 5 4 5 csc = sec = cot = cot =2 csc = 5 sec = 3 4 3 2 Homework: p.251 #1-7 odd, 11, 12-16 even, 33-39 odd, 43-57odd 8