Download Absolute Value Equations

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Absolute Value Equations
Solve for x and explain your reasoning:
1. x  2
2. x  0
3. x  1
4. x   x
Since the absolute value of x can either be positive or negative, we must solve for both
the positive and negative solutions of x in an absolute value equation.
Ex:
x2 5
x2 5
x  2  5
+2 +2
+2 +2
X=7
x = -3
{x: x = 7, -3}
Try it!
1. x  4  3
2. 9  x  4
5. 2 x  6  14
6. 3x  4  7
Process:
1. Remove the absolute value sign.
2. Solve for the positive solution.
3. Solve for the negative solution.
3. 6  x  9
4. x  12  8
ISOLATING ABSOLUTE VALUE EXPRESSIONS
Just like solving for x, we need to isolate the entire absolute value expression before we
can solve.
Ex:
2x  7  5  4
+5 +5
2x  7  9
2x – 7 = 9
+7 +7
2x = 16
2
2
X=8
2x – 7 = -9
+7 +7
2x = -2
2
2
x = -1
Check by plugging each solution back into your original equation.
Examples:
1. 6  x  1  9
2. x  17  9  1
3. 7  4  x  12
4. 3x  2  2  5
5. 4 x  3  4  8
6. 3   2x  9  10
7. 6   x  5  9
8. 4  5x  8  15
9. 7  3x  10  4
10. 2 3x  7  2  4
Homework: Workbook p. 64, 26-49 EVEN
***EXTRA PRACTICE!***
1. x  9  4
2. x  7  16
3. 2 x  4  6  9
4. 4  x  10  14
5. 10  3x  1  24
6. 2 x  9  15  36
7. 2 x 
1
1  9
2
8. 3 x 
1
 5  17
2
9. 3 4 x  9  2  6
Related documents