Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
gcf (lef+overs) ...then check the (lef+overs) for other factoring! Difference (Subtraction?) Case II Trinomial Leading coefficient? Of (don't forget to check for a GCF) Two (Binomial?) Find your factors & signs Squares (both perfect?) Rewrite as 4 terms a2 - b2 = (a + b)(a - b) Factor by grouping (GCF each) Rearrange Case I Trinomial No leading coefficient? Factor by grouping Find your factors & signs Put terms in descending order, Drop & done! or with other like-factor terms Group terms in sets of 2 Factor each group Rearrange QUESTION #9 (in the case I trinomial section) and QUESTION #11 (in the factor by grouping section) changed. SEE UPDATED REVIEW SHEET ON MY WEBSITE! Chapter 1: Polynomials REVIEW SHEET ANSWER KEY Factor each of the following using the GCF: 1) z(12x – 7y) 2) 2x(2x – 3) 3) 3x3(5 – 3x) 4) 27x2y2(x2 – 2y2) 5) 8xz(10y + 9xz2) 6) 4xy(-12x + 5y2) 7) 8x2(3x2 – 2) 8) 15x2y2z(-x2 + 2z) 9) 4xy(2x – 3x2y2 + 4y) 10) 3xy2(8x2 + 5y – 11x) 11) 5(3x3 + 5 – 8x2) 12) 9xy2(2x3 – 4xy3 + 3y2) Factor each of the following (DOTS or Perfect Squares) 1) (p – 9)(p + 9) 2) (x – 6)(x + 6) 3) (b – 11)(b + 11) 4) 4(s – 6)(s + 6) 5) 5(g – 7)(g + 7) 6) 25(k – 3)(k + 3) 7) (2x – 3y)(2x + 3y) 8) (4x – 9)(4x + 9) 9) (3 – x)(3 + x) Factor each of the following (Case 1 trinomials) 1) (w – 12)(w + 11) 2) (x – 3)(x + 16) 3) (z + 12)(z – 3) 4) (h + 6)(h + 6) 5) (r + 9)(r - 4) 6) (b – 9)(b + 4) 7) (m – 18)(m – 2) 8) (y – 10)(y + 6) 9) (v - 10)(v - 6) 10) (r – 5)(r + 12) 11) (x + 60)(x + 1) 12) (g – 20)(g – 3) Factor each of the following: (by grouping- 4 terms) 1) (r – 8)(8r2 + 1) 2) (4p – 7)(3p2 + 7) 3) (2x2 – 5)(6x + 1) 4) (3v – 8)(2v2 + 7) 5) 3(7n + 6)(3n2 – 5) 6) 3(k – 4)(7k2 + 5) 7) (5v + 1)(5v2 + 6) 8) 5(3n + 5)(7n2 – 5) 9) (b – 3)(4b2 – 5) 10) (4n – m)(4m – 7) 11) (6m - n2)(7c + 6d) 12) (4y – 1)(x – 6) Factor each of the following: (Case II) 1) (x – 6)(2x + 5) 2) (3s + 4)(4s + 1) 3) (3c + 2)(6c – 1) 4) (2y + 1)(9y + 5) 5) (3f – 1)(5f – 3) 6) (k + 1)(15k – 8) 7) 2(2s – 5)(3s + 2) 8) 6(d + 1)(4d – 5) 9) 3(w + 4)(7w + 3) 10) 5(x + 5)(8x + 1) 11) 10(2z + 1)(5z – 2) 12) 3(2r – 7)(4r – 1) 1) 7(f + 6)(f + 6) 2) 2(x – 10)(x + 9) 3) 9(k – 7)(k – 4) 4) 3x(1 – 2x)(1 + 2x) 5) 7(x + 1)(x + 3) 6) (4x2+9)(2x–3)(2x + 3) 7) 12(3x2 – 1)(3x2 + 1) 8) 3(x + 3)(2x + 1) 9) 4x(3 + 2y) 10) (3x – 2)(3x + 2) 11) 12(2x – y4)(2x + y4) 12) 8x(x – 3)(x – 3) Factor Completely Perform the indicated operation. (Addition/Subtraction/Multiplication/Division) 1) 5x + 10x2 – 2 2) -3y2 – 18y + 16 3) 41r + 8y + 6 4) 8y2 – 10y 5) b2 – 6b + 12 6) -22r + 23 7) 32c2 – 7c 8) -8y2 – 4y + 6 9) -9y2 - 6y 10) j3 – 2j2 – 4j + 33 7) k3 – 8k + 3 13) 72y2 – 42y – 15 14) 8u2 – 6u - 2 15) 3g4 – 14g3 + 8g2 + g – 4 16) -32m3 + 68m2 – 29m + 14 18) 5y8 – 3y17 + 2y 19) -3 – 4hk + 5h2 20) 2a – 1 + 3a6 21) 21pe – 14p2 + 1 12) 2p3 – 20p2 + 48p 17) 18y + 9 – 2y3 – y2