Download document 8935360

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
B.Sc., DEGREE EXAMINATION – MATHEMATICS
SECOND SEMESTER – APRIL 2015
MT 2501/MT 2500 – ALGEBRA, ANALY.GEO, CALCULUS – PAPER-II
Date : 27/04/2015
Time : 09:00-12:00
Dept. No.
Max. : 100 Marks
PART-A
Answer ALL questions:
1. Evaluate  sin 4 xdx .
(10 x 2 =20)
2. Evaluate   log x  dx .
2
1
dy  1  y 2  2
3. Solve

 0
dx  1  x 2 
4. Solve  D2  5D  6  y  0 .
n3  1
5. Test the convergence of series  n
.
n 0 2  1
6. State the Cauchy’s root test.

7. Write the expansion of 1  x 
1
2
.
 b  ax   .....
b  ax  b  ax 
8. Find the coefficient of x in 1 

 .... 
1!
2!
n!
9. Find the angle between the planes x  y  2 z  3  0and 2x  y  z  6  0 .
2
n
n
10. Find the equation of sphere with centre  1, 2, 3 and radius 3units.
PART-B
Answer any FIVE questions:
(5 x 8=40)
11. Find the area of the surface of the solid generated by rotating the cardioid r  a 1  cos   about its
the line of symmetry.
12. Evaluate  x 4  log x  dx .
3
13. Solve
dy
sin x cos 2 x
 y tan x 
dx
y2
 x dy  y dx 
14. Solve x dx  y dy   2
0 .
2
 x y 
15. Examine the convergence of the series
1
3
5


 ....
1.2.3 2.3.4 3.4.5
1  3 1  3  32

 .... .
2!
3!
 1 11 1 1 1
17. Show that log 12  1         2  .... .
 2 3 4  4 5 4
x 1 y  2 z  3 x  2 y  3 z  4
18. Show that
are coplanar. Also find the equation of the


&


2
3
4
3
4
5
plane containing them.
16. Sum the series 1 
PART-C
Answer any TWO questions:

 sin x  2
Evaluate 
dx .
3
3
2
  cos x  2
0  sin x 
2
19. (a)
(2 x 20=40)
3
(b) Find the length of one loop of the curve 3ay 2  x  x  a  .
2
(10+10)
20. (a) Solve  D2  D  1 y  sin 2 x .
(b) Solve xy   2 x  1 y   x  1 y  x 2e x .
2
21. (a) When x is small prove that
(b) Sum the series
(10+10)
3
1  3x  3  1  4 x  4
1
1
1  3x  3  1  4 x  4
5 7 9
   ....
1! 3! 5!
 1
3
x  4 x 2 approximately.
2
(10+10)
1 a 1 3 a  a  1 1.3.5 a  a  1 a  2 
22. (a) Prove that the series 1  .  . . .

.
 ... is
2 b 2 4 b  b  1 2.4.6 b  b  1 b  2 
1
.
2
x 3 y 8 z 3 x  3 y  7 z 6
(b) Find the shortest distance between
. (10+10)


;


3
1
1
3
2
4
convergent if a  0, b  0 & b  a 
$$$$$$$
Related documents