Download document 8935360

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
B.Sc., DEGREE EXAMINATION – MATHEMATICS
SECOND SEMESTER – APRIL 2015
MT 2501/MT 2500 – ALGEBRA, ANALY.GEO, CALCULUS – PAPER-II
Date : 27/04/2015
Time : 09:00-12:00
Dept. No.
Max. : 100 Marks
PART-A
Answer ALL questions:
1. Evaluate  sin 4 xdx .
(10 x 2 =20)
2. Evaluate   log x  dx .
2
1
dy  1  y 2  2
3. Solve

 0
dx  1  x 2 
4. Solve  D2  5D  6  y  0 .
n3  1
5. Test the convergence of series  n
.
n 0 2  1
6. State the Cauchy’s root test.

7. Write the expansion of 1  x 
1
2
.
 b  ax   .....
b  ax  b  ax 
8. Find the coefficient of x in 1 

 .... 
1!
2!
n!
9. Find the angle between the planes x  y  2 z  3  0and 2x  y  z  6  0 .
2
n
n
10. Find the equation of sphere with centre  1, 2, 3 and radius 3units.
PART-B
Answer any FIVE questions:
(5 x 8=40)
11. Find the area of the surface of the solid generated by rotating the cardioid r  a 1  cos   about its
the line of symmetry.
12. Evaluate  x 4  log x  dx .
3
13. Solve
dy
sin x cos 2 x
 y tan x 
dx
y2
 x dy  y dx 
14. Solve x dx  y dy   2
0 .
2
 x y 
15. Examine the convergence of the series
1
3
5


 ....
1.2.3 2.3.4 3.4.5
1  3 1  3  32

 .... .
2!
3!
 1 11 1 1 1
17. Show that log 12  1         2  .... .
 2 3 4  4 5 4
x 1 y  2 z  3 x  2 y  3 z  4
18. Show that
are coplanar. Also find the equation of the


&


2
3
4
3
4
5
plane containing them.
16. Sum the series 1 
PART-C
Answer any TWO questions:

 sin x  2
Evaluate 
dx .
3
3
2
  cos x  2
0  sin x 
2
19. (a)
(2 x 20=40)
3
(b) Find the length of one loop of the curve 3ay 2  x  x  a  .
2
(10+10)
20. (a) Solve  D2  D  1 y  sin 2 x .
(b) Solve xy   2 x  1 y   x  1 y  x 2e x .
2
21. (a) When x is small prove that
(b) Sum the series
(10+10)
3
1  3x  3  1  4 x  4
1
1
1  3x  3  1  4 x  4
5 7 9
   ....
1! 3! 5!
 1
3
x  4 x 2 approximately.
2
(10+10)
1 a 1 3 a  a  1 1.3.5 a  a  1 a  2 
22. (a) Prove that the series 1  .  . . .

.
 ... is
2 b 2 4 b  b  1 2.4.6 b  b  1 b  2 
1
.
2
x 3 y 8 z 3 x  3 y  7 z 6
(b) Find the shortest distance between
. (10+10)


;


3
1
1
3
2
4
convergent if a  0, b  0 & b  a 
$$$$$$$
Related documents