Download IEEE Computer Communications Workshop October 14 - 17, 2001 Charlottesville, Virginia

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
berlin
Technische Universität Berlin
IEEE Computer Communications Workshop
October 14 - 17, 2001 Charlottesville, Virginia
Martin Maier
Technical University Berlin, Germany
1
berlin
Technische Universität Berlin
Outline
Outline
•
•
•
•
•
•
•
Motivation
Metro gap
Requirements of future metro WDM networks
Research & standardization activities
Architecture & MAC protocol
Results
Conclusions
2
berlin
Technische Universität Berlin
Motivation
Motivation
Backbone:
- Huge WDM pipes
- Optical bypass
OXC
OXC
OADM
Metro/Access:
Bottleneck ?
Local:
- Broadband access
- High-speed clients
wireless
access
FTTx
xDSL
cable modem
IP, GbE, ATM
ESCON, FR
3
berlin
Technische Universität Berlin
Metro
Metro Gap
Gap
• Current metro networks mostly based on SONET/SDH
rings
• Inefficiencies due to TDM and mapping
• Bandwidth abyss between backbone and clients causes
so-called metro gap
• Solutions required to bridge this gap
• RHK: „... Metro and access optical markets are currently
the fastest growing segments ...“
4
berlin
Technische Universität Berlin
Metro
Metro WDM
WDM Networks:
Networks: Requirements
Requirements
• Flexibility: Support of a wide range of legacy protocols and
also new services
– TDM voice and leased lines, VPN
– IP, ATM, FR, GbE, ESCON, Fibre Channel
– Peer-to-peer applications (e.g., Napster)
•
•
•
•
Cost-sensitivity: Simple architecture and operation
Scalability/Upgradability
Reliability: 50 ms restoration
Compatibility with access and backbone infrastructure
(OAM/P)
5
berlin
Technische Universität Berlin
Metro
Metro WDM
WDM Ring
Ring Networks:
Networks: HORNET
HORNET
One
fiber
PoP
IP Router
Node 4
Node 1
IP Router
•
•
•
•
Node 5
Node 2
Node 3
Hybrid Optoelectronic Ring NETwork (Stanford & Sprint) [1]
Packets directly over WDM ring w/o SONET transport
Nodes equipped with fast tunable Tx and fixed tuned Rx
CSMA/CA MAC protocol
6
berlin
Technische Universität Berlin
Metro
Metro WDM
WDM Ring
Ring Networks:
Networks: RPR
RPR
• Resilient Packet Ring (standard to be completed in 2003)
– IEEE 802.17 WG
– IETF WG IPoRPR
– Dual ring comprising price & performance of Ethernet and
resilience of SONET/SDH
• Vendors with proprietary pre-standard solutions
(e.g., CISCO‘s DPT/SRP: RFC 2892)
• Fredrik Hanell, DYNARC:
„... RPR uses ... two performance-enhancing schemes:
Spatial reuse ... [and] Shortest path steering...“
7
berlin
Technische Universität Berlin
Arrayed-Waveguide
Arrayed-Waveguide Grating
Grating
• Arrayed-Waveguide Grating (AWG):
– Passive wavelength router
– Allows for extensive spatial wavelength reuse
– Used for single-hop WDM networks
2x2
AWG
FSR FSR
8
berlin
Technische Universität Berlin
AWG-based
AWG-based Metro
Metro WDM
WDM Star
Star Networks
Networks
• Telstra:
– AWGs for cost-effective metro WDM network architectures [2]
• NTT:
– Multiple fixed-tuned transceivers per node [3]
– Centralized resource management with λ-conversion [4]
• ACTS programme SONATA (national-scale network):
– Reservation based access
– Each node with one tunable transceiver
– Centralized slot/wavelength assignment [5]
9
berlin
Technische Universität Berlin
Network
Network and
and Node
Node Architecture
Architecture
Transmitting Part
Receiving Part
Combiner
Splitter
EDFAs
Node 1
Node 1
Sx1
1xS
DxD
AWG
Sx1
1xS
Node N
Data
Control
Node N
LD
Spreader
SLED
PD
Data
Despreader
Control
10
berlin
Technische Universität Berlin
[6]
Architecture:
Characteristics
Architecture: Characteristics [6]
No central controller with λ-conversion
Resources are allocated in a distributed fashion
Increased concurrency by using multiple FSRs
Novel node architecture:
Simultaneous transmission of control and data without
requiring additional control channel(s) and receiver(s)
• Control broadcast by means of spectral slicing
• Extendable to CDMA
•
•
•
•
11
berlin
Technische Universität Berlin
[7]
MAC
Protocol:
Basic
Principles
MAC Protocol: Basic Principles [7]
• WDM/SDM/TDM/CDM
• Reservation based Þ Pretransmission coordination
Þ control packet (via modified slotted ALOHA)
• Control packet:
– Destination address (unicast and/or multicast)
– Length of corresponding data packet
– Type: Packet or circuit switching
• Global knowledge at each node
• Distributed scheduling Þ no explicit ACKs
• In case of failure: Retransmit control packet
12
berlin
Technische Universität Berlin
MAC
MAC Protocol:
Protocol: Wavelength
Wavelength Assignment
Assignment
AWG
port x
λ
= Reservation window for nodes
@ AWG input port x
AWG
port 1
AWG
port 2
AWG
port D
D
FSR
2
1
frame 1
frame 2
frame D
time
cycle
13
berlin
Technische Universität Berlin
MAC
MAC Protocol:
Protocol: Frame
Frame Format
Format
Data packets
Data (LD)
=
Control (SLED)
frame
Reservation
slots
frame
Data & Control
No Reuse
Only Data
Reuse
14
berlin
Technische Universität Berlin
Fixed-Size
Fixed-Size Packets:
Packets: Multiple
Multiple FSRs
FSRs
Mean Delay (frames)
250
1 FSR
2 FSRs
3 FSRs
200
150
100
50
0
0,0
0,5
1,0
1,5
2,0
2,5
3,0
Mean Aggregate Throughput (packets/frame)
3,5
15
berlin
Technische Universität Berlin
Variable-Size
Variable-Size Packets:
Packets: Multiple
Multiple FSRs
FSRs ++ Reuse
Reuse
Mean Aggregate Throughput
(packets/frame)
10
9
8
7
6
5
only long packets
long & short packets w/o reuse
long & short packets w/ reuse
only short packets w/o reuse
only short packets w/ reuse
4
3
2
1
0
0,0
0,2
0,4
0,6
0,8
Mean Arrival Rate (packet/cycle)
1,0
16
berlin
Technische Universität Berlin
Protection
Protection
• Reliability challenges in star (and bus) topologies
• 1+1 redundancy
• Alternative strategy: n:r router & m:N path protection [8]:
- greater resilience than
ring structures
- restoration <= 50 ms
2
1
HUB:
r working
AWGs
n protection
AWGs
3
N
= working
= protection
17
berlin
Technische Universität Berlin
Conclusions
Conclusions
• Metro gap
• IP & WDM w/o SONET/SDH transport
• RPR: Ethernet price and performance & SONET/SDH
survivability
• AWG:
– Efficient star networks
– Alternative protection schemes
18
berlin
Technische Universität Berlin
References
References
[1] K. V. Shrikhande et al., „HORNET: A Packet-Over-WDM Multiple Access Metropolitan Area Ring
Network“, IEEE JSAC, vol. 18, no. 10, pp. 2004-2016, Oct. 2000
[2] F. Rühl and T. Anderson, „Cost-Effective Metro WDM Network Architectures“, in Proc., OFC 2001
Technical Digest, paper WL1, Anaheim, CA, March 2001
[3] K. Kato et al., „10-Tbps Full-Mesh WDM Network Based On Cyclic-Frequency Arrayed-Waveguide
Grating Router“, in Proc., ECOC 2000, vol. 1, pp. 105-107, Munich, Germany, Sept. 2000
[4] A. Okada et al., „All-optical packet routing by an out-of-band optical label and wavelength conversion
in a full-mesh network based on cyclic-frequency AWG“, in Proc., OFC 2001 Technical Digest, paper
ThG5, Anaheim, CA, March 2001
[5] N. P. Caponio et al., „Single-layer optical platform based on WDM/TDM multiple access for largescale ‚switchless‘ networks“, European Trans. On Telecommun., vol. 11, no. 1, pp. 73-82, Jan./Feb.
2000
[6] M. Maier et al., „High-performance switchless WDM network using multiple free spectral ranges of an
arrayed-waveguide grating“, in Proc., Terabit Optical Networking: Architecture, Control and
Management Issues, Part of SPIE Photonics East 2000, vol. 4213, pp. 101-112, Boston, MA, Nov.
2000
[7] M. Maier et al., „Towards Efficient Packet Switching Metro WDM Networks“, SPIE Optical Networks
Magazine, Special Issue: Optical Packet Switching Networks, 2002
[8] A. M. Hill et al., „Multiple-Star Wavelength-Router Network and Its Protection Strategy“, IEEE JSAC,
vol. 16, no. 7, pp. 1134-1145, Sept. 1998
19
Related documents