Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
berlin Technische Universität Berlin IEEE Computer Communications Workshop October 14 - 17, 2001 Charlottesville, Virginia Martin Maier Technical University Berlin, Germany 1 berlin Technische Universität Berlin Outline Outline • • • • • • • Motivation Metro gap Requirements of future metro WDM networks Research & standardization activities Architecture & MAC protocol Results Conclusions 2 berlin Technische Universität Berlin Motivation Motivation Backbone: - Huge WDM pipes - Optical bypass OXC OXC OADM Metro/Access: Bottleneck ? Local: - Broadband access - High-speed clients wireless access FTTx xDSL cable modem IP, GbE, ATM ESCON, FR 3 berlin Technische Universität Berlin Metro Metro Gap Gap • Current metro networks mostly based on SONET/SDH rings • Inefficiencies due to TDM and mapping • Bandwidth abyss between backbone and clients causes so-called metro gap • Solutions required to bridge this gap • RHK: „... Metro and access optical markets are currently the fastest growing segments ...“ 4 berlin Technische Universität Berlin Metro Metro WDM WDM Networks: Networks: Requirements Requirements • Flexibility: Support of a wide range of legacy protocols and also new services – TDM voice and leased lines, VPN – IP, ATM, FR, GbE, ESCON, Fibre Channel – Peer-to-peer applications (e.g., Napster) • • • • Cost-sensitivity: Simple architecture and operation Scalability/Upgradability Reliability: 50 ms restoration Compatibility with access and backbone infrastructure (OAM/P) 5 berlin Technische Universität Berlin Metro Metro WDM WDM Ring Ring Networks: Networks: HORNET HORNET One fiber PoP IP Router Node 4 Node 1 IP Router • • • • Node 5 Node 2 Node 3 Hybrid Optoelectronic Ring NETwork (Stanford & Sprint) [1] Packets directly over WDM ring w/o SONET transport Nodes equipped with fast tunable Tx and fixed tuned Rx CSMA/CA MAC protocol 6 berlin Technische Universität Berlin Metro Metro WDM WDM Ring Ring Networks: Networks: RPR RPR • Resilient Packet Ring (standard to be completed in 2003) – IEEE 802.17 WG – IETF WG IPoRPR – Dual ring comprising price & performance of Ethernet and resilience of SONET/SDH • Vendors with proprietary pre-standard solutions (e.g., CISCO‘s DPT/SRP: RFC 2892) • Fredrik Hanell, DYNARC: „... RPR uses ... two performance-enhancing schemes: Spatial reuse ... [and] Shortest path steering...“ 7 berlin Technische Universität Berlin Arrayed-Waveguide Arrayed-Waveguide Grating Grating • Arrayed-Waveguide Grating (AWG): – Passive wavelength router – Allows for extensive spatial wavelength reuse – Used for single-hop WDM networks 2x2 AWG FSR FSR 8 berlin Technische Universität Berlin AWG-based AWG-based Metro Metro WDM WDM Star Star Networks Networks • Telstra: – AWGs for cost-effective metro WDM network architectures [2] • NTT: – Multiple fixed-tuned transceivers per node [3] – Centralized resource management with λ-conversion [4] • ACTS programme SONATA (national-scale network): – Reservation based access – Each node with one tunable transceiver – Centralized slot/wavelength assignment [5] 9 berlin Technische Universität Berlin Network Network and and Node Node Architecture Architecture Transmitting Part Receiving Part Combiner Splitter EDFAs Node 1 Node 1 Sx1 1xS DxD AWG Sx1 1xS Node N Data Control Node N LD Spreader SLED PD Data Despreader Control 10 berlin Technische Universität Berlin [6] Architecture: Characteristics Architecture: Characteristics [6] No central controller with λ-conversion Resources are allocated in a distributed fashion Increased concurrency by using multiple FSRs Novel node architecture: Simultaneous transmission of control and data without requiring additional control channel(s) and receiver(s) • Control broadcast by means of spectral slicing • Extendable to CDMA • • • • 11 berlin Technische Universität Berlin [7] MAC Protocol: Basic Principles MAC Protocol: Basic Principles [7] • WDM/SDM/TDM/CDM • Reservation based Þ Pretransmission coordination Þ control packet (via modified slotted ALOHA) • Control packet: – Destination address (unicast and/or multicast) – Length of corresponding data packet – Type: Packet or circuit switching • Global knowledge at each node • Distributed scheduling Þ no explicit ACKs • In case of failure: Retransmit control packet 12 berlin Technische Universität Berlin MAC MAC Protocol: Protocol: Wavelength Wavelength Assignment Assignment AWG port x λ = Reservation window for nodes @ AWG input port x AWG port 1 AWG port 2 AWG port D D FSR 2 1 frame 1 frame 2 frame D time cycle 13 berlin Technische Universität Berlin MAC MAC Protocol: Protocol: Frame Frame Format Format Data packets Data (LD) = Control (SLED) frame Reservation slots frame Data & Control No Reuse Only Data Reuse 14 berlin Technische Universität Berlin Fixed-Size Fixed-Size Packets: Packets: Multiple Multiple FSRs FSRs Mean Delay (frames) 250 1 FSR 2 FSRs 3 FSRs 200 150 100 50 0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 Mean Aggregate Throughput (packets/frame) 3,5 15 berlin Technische Universität Berlin Variable-Size Variable-Size Packets: Packets: Multiple Multiple FSRs FSRs ++ Reuse Reuse Mean Aggregate Throughput (packets/frame) 10 9 8 7 6 5 only long packets long & short packets w/o reuse long & short packets w/ reuse only short packets w/o reuse only short packets w/ reuse 4 3 2 1 0 0,0 0,2 0,4 0,6 0,8 Mean Arrival Rate (packet/cycle) 1,0 16 berlin Technische Universität Berlin Protection Protection • Reliability challenges in star (and bus) topologies • 1+1 redundancy • Alternative strategy: n:r router & m:N path protection [8]: - greater resilience than ring structures - restoration <= 50 ms 2 1 HUB: r working AWGs n protection AWGs 3 N = working = protection 17 berlin Technische Universität Berlin Conclusions Conclusions • Metro gap • IP & WDM w/o SONET/SDH transport • RPR: Ethernet price and performance & SONET/SDH survivability • AWG: – Efficient star networks – Alternative protection schemes 18 berlin Technische Universität Berlin References References [1] K. V. Shrikhande et al., „HORNET: A Packet-Over-WDM Multiple Access Metropolitan Area Ring Network“, IEEE JSAC, vol. 18, no. 10, pp. 2004-2016, Oct. 2000 [2] F. Rühl and T. Anderson, „Cost-Effective Metro WDM Network Architectures“, in Proc., OFC 2001 Technical Digest, paper WL1, Anaheim, CA, March 2001 [3] K. Kato et al., „10-Tbps Full-Mesh WDM Network Based On Cyclic-Frequency Arrayed-Waveguide Grating Router“, in Proc., ECOC 2000, vol. 1, pp. 105-107, Munich, Germany, Sept. 2000 [4] A. Okada et al., „All-optical packet routing by an out-of-band optical label and wavelength conversion in a full-mesh network based on cyclic-frequency AWG“, in Proc., OFC 2001 Technical Digest, paper ThG5, Anaheim, CA, March 2001 [5] N. P. Caponio et al., „Single-layer optical platform based on WDM/TDM multiple access for largescale ‚switchless‘ networks“, European Trans. On Telecommun., vol. 11, no. 1, pp. 73-82, Jan./Feb. 2000 [6] M. Maier et al., „High-performance switchless WDM network using multiple free spectral ranges of an arrayed-waveguide grating“, in Proc., Terabit Optical Networking: Architecture, Control and Management Issues, Part of SPIE Photonics East 2000, vol. 4213, pp. 101-112, Boston, MA, Nov. 2000 [7] M. Maier et al., „Towards Efficient Packet Switching Metro WDM Networks“, SPIE Optical Networks Magazine, Special Issue: Optical Packet Switching Networks, 2002 [8] A. M. Hill et al., „Multiple-Star Wavelength-Router Network and Its Protection Strategy“, IEEE JSAC, vol. 16, no. 7, pp. 1134-1145, Sept. 1998 19