Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Gene Section Mini Review MEF2D (myocyte enhancer factor 2D) Victor Prima, Lyudmyla G Glushakova, Stephen P Hunger University of Florida College of Medicine, Gainesville, FL 32610, USA (VP, LGG); Children's Hospital and the Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA (SPH) Published in Atlas Database: October 2009 Online updated version : http://AtlasGeneticsOncology.org/Genes/MEF2DID43636ch1q22.html DOI: 10.4267/2042/44827 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2010 Atlas of Genetics and Cytogenetics in Oncology and Haematology MADS-box on N terminus (2-78 aa, MAD MEF2 like); the 29-aa MEF2 domain immediately C-terminal to the MADS- box (unique to the MEF2 factors); C-terminal transcriptional activation domains. Both MADS and MEF2 domains are necessary and sufficient for dimerization and binding to the DNA sequence CTA(A/T)4TAG/A. MEF2 domain influences cofactor interactions (Pollock and Treisman, 1991; Molkentin and Olson, 1996). Regions: 2-38 aa of the MADS domain confer DNA binding site specificity; 21-73 aa, dimerization interface; 59 aa, putative phosphorylation site. Identity Other names: DKFZp686I1536 HGNC (Hugo): MEF2D Location: 1q22 Note: MEF2D is a member of the family of myocyte enhancer factor MEF2 that includes MEF2A, MEF2B, MEF2D, MEF2C. DNA/RNA Description Expression 12 exons. High level expression in muscles and neurons, at lower levels in a wide range of cell types (Black and Olson, 1998). Transcription 5888 bp mRNA, coding sequence: from 391 bp to 1956 bp (NCBI, GenBank NM_005920); alternative splicing in E3 (3alpha1 and 3alpha2) and beta produces 4 splicing isoforms: alpha1, alpha1beta, alpha2, alpha2beta (Zhu et al., 2005). Localisation Nuclear (Neely et al., 2009). Function DNA binding, transcriptional activation. Transmission of extracellular signals to the genome, control of cell differentiation, proliferation, morphogenesis, survival and apoptosis of a wide range of cell types. Important in immediate-early development in animals. MEF2D dimers regulate expression of genes involved in muscle-specific and/or growth factor-related transcription. It seems to be transcriptional effector of mitogenic signaling pathways initiated by mitogen-activated protein kinases (MAPKs) including p38 and ERK5 (extracellular signal-related kinase 5)/Big MAPK-1, and also plays critical roles in calcium-regulated Protein Note MEF2D belongs to MEF2 (myocyte enhancer factor 2)like/Type II subfamily of MADS (MCM1, Agamous, Deficiens, and SRF (serum response factor) box family of eukaryotic transcriptional regulators). Description MEF2D encodes approximately a 521 aa-long protein (GenBank at NCBI presented 4 isoforms: CRA_a, 521 aa, EAW52952.1; CRA_b, 143 aa, EAW52949.1; CRA_c, 288 aa, EAW52950.1; CRA_d, 523 aa, EAW52951.1). It is composed of several domains: the Atlas Genet Cytogenet Oncol Haematol. 2010; 14(8) 772 MEF2D (myocyte enhancer factor 2D) Prima V, et al. A. Localization of TS-2 chromosome 19 breakpoint via FISH. Metaphase FISH was performed using cosmids containing chromosome 19 genomic DNA. Cosmids that hybridize to the der(19) are located centromeric to the chromosome 19 breakpoint (green signal), while cosmids that hybridize to the der(1) are located telomeric to the chromosome 19 breakpoint (red signal). Split signals on both the der(1) and der(19) chromosomes indicate that the chromosome 19 breakpoint is located within the region homologous to the cosmid. B. Alignment of genomic DNA sequences of TS-2 chromosomes. Genomic sequence (accession AY681494) of der(19) aligned with chromosome 19 (gi: 37552371) and 1 (gi: 37549803) genomic contigs. Non- homologous insert shown in bold uppercase. Genomic sequence (accession AY681493) of der(1) aligned with chromosome 19 and 1 genomic contigs. (Prima et al., 2007). signaling pathways that control survival of neurons and T-cells; induces expression of c-jun, a known transforming oncogene, and has recently been identified in murine retroviral mutagenesis studies as a candidate oncogene involved in the pathogenesis of Atlas Genet Cytogenet Oncol Haematol. 2010; 14(8) lymphoid malignancies (Lund et al., 2002; Suzuki et al., 2002; Han and Prywes, 1995). Homology Belongs to MEF2-like/Type II subfamily of MADS box family of eukaryotic transcriptional regulators. The 773 MEF2D (myocyte enhancer factor 2D) Prima V, et al. MADS-box is found so far in a diverse group of transcription factors from yeast, animals and seed plants. acids 1-87 and 105-190. DAZAP1/MEF2D fusion cDNAs (accession AY678451) are predicted to encode a chimeric protein that contains all of the first DAZAP1 RRM and a truncated portion of the second RRM joined to the carboxy terminal portion of MEF2D that includes the second TAD. Reciprocal MEF2D/DAZAP1 fusion transcripts (accession AY675556) are predicted to encode a chimera that includes the MEF2D MADSbox, MEF2 domain, and the first TAD joined to the carboxy terminus of DAZAP1 including a truncated portion of RRM 2. DAZAP1 bound strongly to poly(U) and poly(G) at 0.1 M NaCl, whereas DAZAP1/MEF2D bound to the same homopolymers to a lesser degree; MEF2D/DAZAP1 retains DNA-binding properties of wild type MEF2D; MEF2D/DAZAP1 is a more potent transcriptional activator than wild type MEF2D. MEF2D-DAZAP1 was co-immunoprecipitated with wild type MEF2D from HEK293 cells, suggesting that the wild type and chimeric MEF2D proteins could form heterodimers and/or associate with one another in a higher order protein complex in vivo (Yuki et al., 2004). Oncogenesis MEF2D and DAZAP1 fusion proteins were identified as components of novel pathways that contribute to human leukemogenesis. Both MEF2D/DAZAP1 and DAZAP1/MEF2D have oncogenic properties, and coexpression of both fusion proteins is synergistic (Prima and Hunger, 2007). MEF2D/DAZAP1 might directly activate transcription of genes critical for lymphocyte growth and/or survival such as interleukin-2, a known transcriptional target of MEF2D in T-cells. Alternatively, MEF2D/DAZAP1 could contribute to leukemogenesis via dysregulated activation of MAPK-mediated cell proliferation pathways, analogous to constitutive activation of a growth factor receptor. Implicated in Acute lymphoblastic leukemia (ALL) Hybrid/Mutated gene A variant t(1;19)(q23;p13.3) 1048 translocation creates reciprocal DAZAP1/MEF2D and MEF2D/DAZAP1 fusion genes that are expressed in acute lymphoblastic leukemia (ALL). DAZAP1 is expressed most abundantly in the testis and mapped to 19p13.3. DAZAP1 is fused to MEF2D by the t(1;19); the genomic breakpoints occur in introns of MEF2D and DAZAP1 (der(1) (Genbank accession AY681493) and der(19) (accession AY681494)). der(19) breakpoint is located within the 1500 kilobases (kb) of DNA telomeric to E2A. Rearrangments are seen only in TS-2 (ALL cell line) establishing that the t(1;19) interrupts the 19p13.3 gene DAZAP1 with the breakpoint region in approximately the middle of the gene. There is a 5 base pairs insertion at the site of genomic fusion on the der(19) that is not derived from either germline chromosome 1 or 19. Homologous breakpoints occur on the der(1) chromosome with a deletion of 97 bp and a 21 bp GC-rich insertion. MEF2D/DAZAP1 and DAZAP1/MEF2D fusion transcripts are expressed in-frame in TS-2 cells in addition to wild-type DAZAP1 and MEF2D transcripts (Prima et al., 2005). Abnormal protein In-frame MEF2D/DAZAP1 and DAZAP1/MEF2D fusion transcripts are expressed in TS-2 cell line and define the DNA-, RNA-binding, and transcriptional regulatory properties of the resultant chimeric proteins. Native DAZAP1 (NP_061832) includes two identified RNA recognition motifs (RRM) specified by amino Structural features of wild type and chimeric MEF2D and DAZAP1 proteins. Predicted functional domains of DAZAP1, MEF2D, DAZAP1/MEF2D and MEF2D/DAZAP1 proteins. Arrows indicate predicted protein breakpoints. (RRM- RNA recognition motif; MADSDNA binding, protein dimerization domain; MEF2- cofactor interactions domain; TAD- transcriptional activation domain) (Prima et al., 2007). Atlas Genet Cytogenet Oncol Haematol. 2010; 14(8) 774 MEF2D (myocyte enhancer factor 2D) Prima V, et al. Yuki Y, Imoto I, Imaizumi M, Hibi S, Kaneko Y, Amagasa T, Inazawa J. Identification of a novel fusion gene in a pre-B acute lymphoblastic leukemia with t(1;19)(q23;p13). Cancer Sci. 2004 Jun;95(6):503-7 References Pollock R, Treisman R. Human SRF-related proteins: DNAbinding properties and potential regulatory targets. Genes Dev. 1991 Dec;5(12A):2327-41 Prima V, Gore L, Caires A, Boomer T, Yoshinari M, Imaizumi M, Varella-Garcia M, Hunger SP. Cloning and functional characterization of MEF2D/DAZAP1 and DAZAP1/MEF2D fusion proteins created by a variant t(1;19)(q23;p13.3) in acute lymphoblastic leukemia. Leukemia. 2005 May;19(5):806-13 Han TH, Prywes R. Regulatory role of MEF2D in serum induction of the c-jun promoter. Mol Cell Biol. 1995 Jun;15(6):2907-15 Molkentin JD, Olson EN. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9366-73 Zhu B, Ramachandran B, Gulick T. Alternative pre-mRNA splicing governs expression of a conserved acidic transactivation domain in myocyte enhancer factor 2 factors of striated muscle and brain. J Biol Chem. 2005 Aug 5;280(31):28749-60 Black BL, Olson EN. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol. 1998;14:167-96 Prima V, Hunger SP. Cooperative transformation by MEF2D/DAZAP1 and DAZAP1/MEF2D fusion proteins generated by the variant t(1;19) in acute lymphoblastic leukemia. Leukemia. 2007 Dec;21(12):2470-5 Lund AH, Turner G, Trubetskoy A, Verhoeven E, Wientjens E, Hulsman D, Russell R, DePinho RA, Lenz J, van Lohuizen M. Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nat Genet. 2002 Sep;32(1):160-5 Neely MD, Robert EM, Baucum AJ, Colbran RJ, Muly EC, Deutch AY. Localization of myocyte enhancer factor 2 in the rodent forebrain: regionally-specific cytoplasmic expression of MEF2A. Brain Res. 2009 Jun 5;1274:55-65 Suzuki T, Shen H, Akagi K, Morse HC, Malley JD, Naiman DQ, Jenkins NA, Copeland NG. New genes involved in cancer identified by retroviral tagging. Nat Genet. 2002 Sep;32(1):16674 Atlas Genet Cytogenet Oncol Haematol. 2010; 14(8) This article should be referenced as such: Prima V, Glushakova LG, Hunger SP. MEF2D (myocyte enhancer factor 2D). Atlas Genet Cytogenet Oncol Haematol. 2010; 14(8):772-775. 775