Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Topic 1 Semiconductor valves and their characteristics Questions 1.1. Explain the nature of valve properties of p-n-junction. 1.2. Explain the amplifying properties of transistor. 1.3. Explain the process of switching on of the thyristor. 1.4. Basic ratios for the transistor circuit with common base. 1.5. Basic ratios for the transistor circuit with common emitter. 1.6. Basic ratios for the transistor circuit with common collector. 1.7. Peculiarities of power uncontrolled valves connected in parallel. 1.8. Peculiarities of power uncontrolled valves connected in series. 1.9. Inductive current dividers principle of operation. di 1.10. Rate of current change and its influence on power valves operation. dt du 1.11. Rate of voltage change and its influence on power valves operation. dt 1.12. Give the example of contactless power switches with bidirectional conductivity. 1.13. Give the basic parameters of power uncontrolled switches. 1.14. Give the basic parameters of power thyristors. 1.15. Give the basic parameters of power transistors. 1.16. What is triac? 1.17. What is photothyristor? 1.18. What parameters of power semiconductor valves influence on their frequency properties to a great extent? 1.19. What is electronic analog of thyristor, transistor, semiconductor uncontrolled diode? 1.20. Advantages and drawbacks of power thyristors in comparison with power transistors. 1.21. What is composite transistor? Give its main features. 1.22. Draw a circuit of composite transistor which consists of three individual transistors. 1.23. Draw an equivalent circuit of thyristor and explain the positive feedback action during the process of its switching on. 1.24. What are the peculiarities of a number of thyristors connected in parallel. 1.25. What are the peculiarities of a number of transistors connected in parallel and in series. Problems 1.1. Define the average value of rectified current id , RMS values of the currents in secondary and primary windings in the circuit depicted in Fig. 1.1 if ktr 1, U1 220 V , Rd 10 . Losses in the transformer and magnetizing currents are negligible. The valve VD is ideal. VD i2 i1 e2 id Rd Fig. 1.1. 1.2. Given U1 220 V , f 50 Hz , ktr 1, Rd 10 , Ld 0,01 H . Valve VD and transformer Tr are ideal. Define the average value of load voltage U d , average value of load current id , maximum value of the valve reverse voltage UVD max . Plot the curve of the load current id and the curve of primary transformer’s current i1 . VD Tr U1 Rd e2 Ud Ld Fig. 1.2. 1.3. Given U1 220 V , f 50 Hz , ktr 1, Rd 10 , Ld 0,01 H . The valves VD1, VD2 and the transformer Tr are ideal. Define the average value of load voltage U d , average value of load current id . Plot the curves: the valve VD1 voltage U VD1 , the load current id , the currents i1 , i2 and iVD 2 . VD1 Tr i2 U1 i1 e2 id VD 2 Rd U d Ld Fig. 1.3. 1.4. Define the calculated power of the transformer Tr shown in Fig. 1.4. The losses are negligible. Given: U1 220 V , U 2 6,3 V , U 3 15 V , U 4 30 V , I1 0,2 A , I 2 2 A , I 3 1 A , I 4 0,5 A . Tr i2 i3 U1 i1 i4 U2 U3 U4 Fig. 1.4. 1.5. Define the calculated power of the transformer depicted in Fig. 1.5. Given ktr 1, U1 220 V , Rd 10 . Losses in the transformer and magnetizing currents are negligible. The valve VD is ideal. VD i2 i1 id e2 Rd Fig. 1.5. 1.6. Explain the difference between the powers P1 and P2 for the circuit shown in Fig. 1.6. Why do they exceed the load power Pd U d I d . Losses in the transformer and magnetizing currents are negligible. The valve VD is ideal. VD i2 i1 e2 id Rd Fig. 1.6. 1.7. Given U1 220 V , ktr 1, Rd 10 . Taking into account that the valves are ideal and the losses in transformer are negligible, define the constant component of rectified voltage and current ( U d and I d ). Find RMS value of transformer’s primary winding current I1 . Plot the curve of reverse voltage of valve. VD1 ia1 e2a Rd U1 i1 e2b ia 2 VD 2 Fig. 1.7. 1.8. Given U AB U BC U CA 220 V , E2 a E2b E2 c 100 V , Rd 10 , X d . The circuit is depicted in Fig. 1.8. Define the RMS value of transformer’s primary winding current I1 . A B C i1 e2a e2b e2с Rd Xd VD1 VD 2 VD3 Fig. 1.8. 1.9. Given U A U B U C 220 V , ktr1 w11 w 1 , Rd 10 . 1 , ktr 2 12 w21 w22 3 Define constant component of rectified voltage U d , RMS value of transformer’s Tr1 primary winding current I1 . Plot the voltage on the valve VD 4 . The valves and transformers are considered to be ideal. A B C О i1 Tr1 VD1 Fig. 1.9. VD 2 Tr 2 VD3 VD 4 Rd 1.10. Given U AB U BC U CA 220 V . Transformation coefficients for the transformers Tr1 and Tr 2 are: ktr1 1, ktr 2 2 . Load resistance Rd 10 . Neglecting the losses in valves and power transformers define the calculated power of the transformers Tr1 and Tr 2 . A B C i11 i12 Tr1 Tr 2 i21 i22 Rd Fig. 1.10. Topic 2. Commutation processes in uncontrolled rectifiers 2.1. Given: U1 100 V , ktr 1, Rd 10 , X a 5 . For the circuit shown in Fig. 2.1 define the constant component of the rectified voltage U d and current id . Xa e2a VD1 Rd U1 i1 e2b Xa VD 2 Fig. 2.1. 2.2. Given: U1 100 V , ktr 1, Rd 10 , X a 5 , X d . The circuit under consideration is depicted in Fig. 2.2. Define U d , I d , I1 . Plot the curve of voltage on the valve VD1. e2a Xa VD1 Rd Xd U1 i1 e2b Xa Fig. 2.2. VD 2 2.3. For the circuit in Fig. 2.3 find RMS value of primary winding transformer’s current if U1 220 V , E2 100 V , Rd 10 , X d , X a 5 . Plot the curve of voltage on the valve VD1. Xa Tr U1 VD 4 VD1 VD3 VD 2 Rd Xd e2 i2k Fig. 2.3. 2.4. For the circuit shown in Fig. 2.4 define leakage X a reactance of power transformer’s windings if U1 220 V , ktr 2,2 , X d . Xa e2a VD1 Rd Xd U1 i1 e2b Xa VD 2 Fig. 2.4. 2.5. For the circuit shown in Fig. 2.5 given: U1 220 V , ktr 2,2 . When the load current changes from I d 1 10 A to I d 1 6 A , rectified voltage U d is changed by the value 10 V. Find the current I1 in primary transformer’s winding if the load current is equal to I d 8 A . Xa Tr U1 VD 4 VD1 VD3 VD 2 e2 Rd Xd Fig. 2.5. 2.6. Given: E2 100 V , X d . The circuit is shown in Fig. 2.6. When load resistance Rd is changed from 10 to 5 Ω, constant component of rectified voltages is changes by 8 V. Plot the external characteristic of the rectifier Ed f I d . Calculate X a . Xa e2a VD1 Rd Xd U1 e2b Xa VD 2 Fig. 2.6. 3.7. For the circuit depicted in Fig. 2.7. given: U1 220 V , E2 100 V , Rd 10 , X d . Commutation angle 15 . What value the primary current I1 is changed if load resistance Rd is changed from 10 to 5 Ω. Xa Tr U1 VD 4 VD1 VD3 VD 2 e2 Rd Xd Fig. 2.7. 2.8. Given U AB U BC U CA U1 220 V , X a , X d , E2 100 V , Rd 10 . For the circuit shown in Fig. 2.8 find current I1 of the primary transformer’s winding. Plot the voltage on valve VD1. A B e2a e2b C i1 e2с Rd Xa Xa Xa Xd VD1 Fig. 2.8. VD 2 VD3 2.9. Given: U AB U BC U CA U1 220 V , E2 100 V , X a 1 , X d , Rd 10 . The circuit under consideration is depicted in Fig. 2.9. Find the current I1 in the primary transformer’s winding. Plot the valve voltage U VD curve. A B e2a e2b e2с Xa Xa Xa C i1 VD 4 VD1 VD6 VD3 VD 2 VD5 Rd Xd Fig. 2.9. 2.10. Given: U AB U BC U CA U1 220 V , ktr 1,27 , X d . When current I d is changed from 10 to 4 A, load voltage is changed by 6 V. Plot the external characteristic Ed f I d . Calculate X a . A B C i1 Tr e2a ia1 ia 2 Xa e2b e2с Rd ia 3 Xa Xa Xd VD1 Fig. 2.10. VD 2 VD3 id Topic 3. Controlled rectifiers 3.1. Given: U1 220 V , E2 100 V , Rd 10 , 30 . The circuit is shown in Fig. 3.1. Define RMS value of primary transformer’s winding current I1 . Plot the curve of thyristor voltage U T . T1 e2a Rd U1 e2b T2 Fig. 3.1. 3.2. Given: U1 220 V , E2 100 V , Rd 10 , X d , 30 . The circuit is depicted in Fig. 3.2. Find RMS value of zero valve current I 0 and primary winding transformer’s current I1 . T1 VD0 e2a Rd Xd U1 e2b T2 Fig. 3.2. 3.3. For the circuit in Fig. 3.3 find RMS value of primary winding transformer’s current I1 if U1 220 V , ktr 1, Rd 10 , X d , 30 . Plot the curve of voltage on the thyristor. A U1 B U1 C i1 e2a T1 e2b e2с T2 Rd T3 X d Fig. 3.3. 3.4. Given: Rd 10 , X d , 30 , E2 100 V . The circuit is shown in Fig. 3.4. Find i2a . C B A e2b i2a e2a Rd Xd Fig. 3.4. 3.5. Given: X a 1 , Rd 10 , X d . The circuit is shown in Fig. 3.5. At 0 Ed 100 V . At what angle the load current I d equals to 5 A. Calculate commutation angle at this value of current. Plot thyristor voltage U T 1 . A B e2a e2b e2с Xa Xa Xa C T4 T1 T6 T3 T2 T5 Rd Xd Fig. 3.5. 3.6. Given: U1 220 V , E2 100 V , 30 0,523 rad , X a 0,5 , Rd 5 , X d . The circuit is shown in Fig. 3.6. Define constant component of load current I d , average values of thyristor’s and diode’s currents and RMS value of primary current I1 . Plot the curve of thyristor voltage. Xa Tr i2 U1 VD 4 T1 VD3 T2 Rd Xd e2 VD0 Fig. 3.6. 3.7. Given: U AB U BC U CA 380 V , E2 100 V , Rd 10 , X a 1 , X d . Load power Pd 2 kW . Find control angle . Calculate RMS value of primary transformer’s winding current I1 , average values of thyristor’s and diode’s currents. A B e2a e2b e2с Xa Xa Xa C i1 VD 4 T1 VD6 T3 VD 2 T5 Rd Xd Fig. 3.7. 3.8. Given U1 220 V , E2 100 V , E0 70,5 V Rd 10 . The circuit is depicted in Fig. 3.8. Define RMS value of primary winding transformer’s current I1 , average value of valves’ current. Plot the curve of thyristor voltage U T if control angle 90 . T1 e2a i1 E0 Rd U1 e2b T2 Fig. 3.8. 3.9. Given: E2 100 V , X a 1 , X d 10 , Rd 3 , E0 70,5 V . The circuit under consideration is depicted in Fig. 3.9. Find the control angle corresponding to boundary-continuous mode. Xa Tr U1 T4 T1 T3 T2 e2 Rd Xd E0 Fig. 3.9. 3.10. Given: U1 220 V , E2 100 V , 30 X d , Rd 5 . The circuit is shown in Fig. 3.10. Find constant component of load current I d , average values of thyristor’s and diode’s currents, RMS primary current value I1 . Plot the curve of thyristor’s voltage. Xa Tr i2 i1 U1 Fig. 3.10. T4 T1 VD3 VD 2 Rd Xd e2 Topic 4. Features of switching processes in controlled rectifiers 4.1. The circuit is shown in Fig. 4.1. Given: E2 220 V , Rd 10 , X d , X a 1 , 60 . Define constant component of load current I d . Calculate commutation angle . Xa e2a i1 Rd T1 Xd U1 e2b Xa T2 Fig. 4.1. 4.2. The circuit is depicted in Fig. 4.2. Given: U1 220 V , E2 100 V , Rd 5 , X d , 30 . Commutation angle 10 . Find constant component of load current I d , RMS value of transformer’s primary winding current I1 . Xa Tr i2 i1 U1 Fig. 4.2. T4 T1 VD3 VD 2 Rd Xd e2 4.3. The circuit is shown in Fig. 4.3. Given Rd 10 , X d , X a 1 . At control angle 0 , Ed 300 V . At what angle 0 , the load current I d 10 A . Calculate commutation angle at given conditions. A B C i1 Xd Xa Xa Xa Xa Xa Xa Rd Fig. 4.3. 4.4. The circuit is depicted in Fig. 4.4. Given: U AB U BC U CA 220 V , E2 100 V , Xa 1 , Xd , Rd 10 , control angle transformer’s primary winding current I1 . 60 . Find A B C i1 e2a e2b e2с Rd Xa Xa Xa Xd T1 T2 T3 Fig. 4.4. 4.5. The circuit is shown in Fig. 4.5. Given: U1 220 V , E2 100 V , Rd 10 , commutation angle 10 , X d , control angle 30 . Calculate RMS value of transformer’s primary winding current I1 . Xa Tr i2 i1 U1 Fig. 4.5. T4 T1 T3 T2 Rd Xd e2 4.6. The circuit is shown in Fig. 4.6. Given: U AB U BC U CA U1 220 V , E2 100 V , X a 0,5 , X d , Rd 10 , control angle 30 . Define RMS value of transformer’s primary winding current I1 . A B e2a e2b e2с Xa Xa Xa C i1 T4 T1 T6 T3 T2 T5 Xd Rd VD0 Fig. 4.6. 4.7. The circuit is depicted in Fig. 4.7. Given: E2 100 V , E0 85 V , Rd 2 , Ld 14,6 mH , f 50 Hz , 60 . Calculate average value of rectified voltage, constant component of load current I d taking into account that the transformer and the valves of rectifier are ideal. T1 i1 e2a Rd Ld U1 e2b E0 T2 Fig. 4.7. 4.8. The circuit is depicted in Fig. 4.8. Given U1 220 V , E2 a E2a E2b E2b 100 V , Rd 10 . Control angle of thyristors T 1 and T 2 30 . Control angle of thyristors T 1 and T 2 90 . Find constant components of rectified current I d and voltage Ed . Define RMS value of transformer’s primary winding current I1 . Plot the curve of voltage on thyristors T 1 and T 1 . T 1 e2a T1 e2a Rd i1 U1 e2b e2b T2 T 2 Fig. 4.8. 4.9. The circuit under consideration is shown in Fig. 4.9. Given U1 220 V , E2 a E2a E2b E2b 100 V , Rd 10 , X d , 1 30 , 1 90 . Find constant components of rectified current I d and voltage Ed . Define RMS value of transformer’s primary winding current I1 . Plot the curve of voltage on thyristors T 1 and T 1 . The transformer and the valves are considered to be ideal. T 1 e2a T1 e2a Xd Rd i1 U1 VD0 e2b T2 e2b T 2 Fig. 4.9. U AB 4.10. The circuit U BC U CA U1 380 V , is shown in Fig. 4.10. Given: E2 a E2b E2 a E2 100 V , E0 70,5 V , Rd 1 , control angle 60 . Define average value of load current and RMS value of primary current I1 . Plot the curve of voltage on thyristor. A B C i1 Fig. 4.10. T2 e2с T3 T1 e2b E0 e2a Rd Topic 5. Power indicators of rectifiers 5.1. The circuit is shown in Fig. 5.1. Given: U1 100 V , Rd 10 , X a 1 , X d , 30 . Calculate total power factor. T1 Xa e2a i1 Rd Xd U1 e2b T2 Xa Fig. 5.1. 5.2. The circuit is shown in Fig. 5.2. Given: U1 100 V , Rd 10 , X a 1 , X d , 30 . Calculate total power factor. T1 VD0 e2a Rd Xd U1 e2b T2 Fig. 5.2. 5.3. The circuit is shown in Fig. 5.3. Given: U AB U BC U CA U1 220 V , E2 a E2b E2c 100 V , X d , Rd 10 , X a 1 , control angle 30 . Define total power S components: P, Q, T. Possible voltages asymmetry is negligible. A B e2a e2b e2с Xa Xa Xa C i1 T4 T1 T6 T3 T2 T5 Rd Xd Fig. 5.3. 5.4. The circuit is depicted in Fig. 5.4. Given: U1 220 V , E2 a E2a E2 b E2b 100 V , X d , Rd 10 , Ed 120 V . Find control angle . Calculate total power factor and components of total power. Compare these indicators in the absence of valves VD1 and VD2. T1 e2a VD1 e2a Xd Rd i1 U1 e2b VD 2 e2b T2 Fig. 5.4. 5.5. The circuit is shown in Fig. 5.5. Given: U1 220 V , E2 100 V , Rd 10 , X a 0 , control angle 30 . Calculate total power factor and total power components. Xa Tr i2 i1 U1 T4 T1 T3 T2 e2 Rd Fig. 5.5. 5.6. The circuit is shown in Fig. 5.6. Given: U1 220 V , E2 100 V , Rd 10 , X d , X a 1 . Calculate total power factor and total power components of the rectifier. Xa Tr i2 i1 U1 T4 T1 VD3 VD 2 Rd Xd e2 Fig. 5.6. 5.7. The circuit is shown in Fig. 5.7. Given: U AB U BC U CA U1 220 V , E2 a E2b E2c 100 V , X d , Rd 10 , X a 1 , control angle 60 . Calculate total power factor and total power components. Compare the indicators found for the two cases: with zero valve and without it. A B C i1 e2a e2b e2с Rd Xa Xa Xa VD0 Xd T1 T2 T3 Fig. 5.7. 5.8. The circuit is shown in Fig. 5.8. Given: U AB U BC U CA U1 220 V , E2 a E2b E2 c E2 100 V , Rd 10 , control angle 30 . Define total power consumed by the rectifier from the mains supply and its components. A B e2a e2b C i1 e2с T4 T1 T6 T3 T2 T5 Rd Fig. 5.8. 5.9. The circuit is shown in Fig. 5.9. Given: U AB U BC U CA U1 220 V , E2 a E2b E2 c E2 100 V , Rd 10 , X d , control angle 30 . Define total power consumed by the rectifier from the mains supply, its components and total power factor . A B C e2a e2b e2с i1 T4 T1 T6 T3 T2 T5 Rd Xd Fig. 5.9. U AB 5.10. The circuit is shown in Fig. 5.10. Given: U BC U CA U1 220 V , ktr 2 , Rd 10 , X d , X a 1 , control angle 90 . Define total power consumed by the rectifier. A B C i1 e2a e2b e2с Rd Xa Xa Xa Xd T1 Fig. 5.10. T2 T3 Topic 6. Inverters led by mains 6.1. The circuit is shown in Fig. 6.1. Given: U1 220 V , transformation coefficient of power transformer ktr 1, EMF of DC power supply E0 100 V , power consumed from the mains supply Psup 10 kW , converter’s efficiency 0,9 , internal resistance of DC power supply rint 0,1 . Inductive reactance of smoothing reactor is infinity. Calculate the currents and voltages of the thyristors, power factor , components of total power. Plot the curve of thyristor’s voltage. T1 Tr e2a U1 i1 Id Xd E0 e2b T2 Fig. 6.1. U AB 6.2. The circuit of inverter led by mains is shown in Fig. 6.2. Given: U BC U CA 380 V , E0 240 V , X d , internal resistance of DC power supply rint 0,5 , advance angle 30 , transformation coefficient of power transformer ktr 1. Define the power consumed from DC power supply, currents and voltages of power valves. A B C i1 Xd e2с Id T1 T2 E0 e2b e2a T3 Fig. 6.2. 6.3. The circuit is shown in Fig. 6.3. Given: U1 380 V , Psup 10 kW , rint 0,5 , 0,9 , X a 1 , current consumed from the DC power supply I d 60 A , commutation angle 20 , X d . Define total power S components: P, Q, T. Xa Tr U1 T4 T1 T3 T2 e2 Xd E0 Fig. 6.3. 6.4. The circuit is depicted in Fig. 6.4. Given: U1 380 V , ktr 1 , X a 0,1 , frequency of mains supply f s 50 Hz , X d , time control properties recovery of power thyristors trec 100 106 s . Plot the limiting characteristic of the inverter. B A C i1 Xd e2b e2с Xa Xa Xa e2a Id E0 T1 T2 T3 Fig. 6.4. 6.5. The circuit is shown in Fig. 6.5. Given: U1 380 V , leakage inductance La 0,001 H , frequency of mains supply f s 50 Hz , ktr 1 , advance angle 30 , X d . Find average value of valves’ current I av , maximum vale of valves’ current I a.max , maximum value of reverse voltage on the valves U a.rev . Xa Tr U1 T4 T1 T3 T2 e2 Xd E0 Fig. 6.5. 6.6. The circuit is shown in Fig. 6.6. Given: U1 220 V , ktr 1, X d , X a 0,1 , 30 , commutation voltage drop U x 15 V . Calculate the power consumed from DC power supply Psup , total power components and total power factor . T1 Tr e2a U1 i1 Id Xd E0 e2b T2 Fig. 6.6. 6.7. The circuit is shown in Fig. 6.7. Given: U1 220 V , La 0,001 H , E0 100 V , 30 , f s 50 Hz , X d . Define commutation angle. Plot the voltage on thyristor. A B C e2a e2b e2с i1 T4 T1 T6 T3 T2 T5 Xd E0 Fig. 6.7. 6.8. The circuit is shown in Fig. 6.8. Given: U AB U BC U CA U1 380 V , ktr 1,1, E0 250 V , X d , 10 , rint 0,5 , X a 0 . Define RMS value of primary current I1 , power Psup consumed from DC power supply. Plot the voltage on thyristor. A B C i1 Xd e2b e2с Xa Xa Xa e2a Id E0 T1 T2 T3 Fig. 6.8. 6.9. The circuit is shown in Fig. 6.9. Given: U1 220 V , ktr 2 , X d , X a 0 , E0 120 V , X d 0 , rint 1 , 170 . Define the primary current I1 . Plot the dependence UT f . T U1 i1 e2 E0 Fig. 6.9. 6.10. The circuit is shown in Fig. 6.10. Given: U AB U BC U CA 100 V , rint 0,5 , X d . If E0 changes by the value 10 V, I d changes by the value 20 A. Define control angle 90 . Define I1 if at E0 100 V and 30 , I d 50 A . Plot the dependence UT f . A B e2a e2b e2с Xa Xa Xa C i1 T4 T1 T6 T3 T2 T5 Xd E0 Fig. 6.10.