Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
592 Chapter 6 Additional Topics in Trigonometry Review Exercises for Chapter 6 1. Given: A 35, B 71, a 8 C 180 35 71 74 2. Given: A 22, B 121, a 17 C 180 A B 37 b a sin B 8 sin 71 13.19 sin A sin 35 b a sin B 17 sin 121 38.90 sin A sin 22 c a sin C 8 sin 74 13.41 sin A sin 35 c a sin C 17 sin 37 27.31 sin A sin 22 3. Given: B 72, C 82, b 54 A 180 72 82 26 4. Given: B 10, C 20, c 33 A 180 B C 150 a b sin A 54 sin 26 24.89 sin B sin 72 a c sin A 33 sin 150 48.24 sin C sin 20 c b sin C 54 sin 82 56.23 sin B sin 72 b c sin B 33 sin 10 16.75 sin C sin 20 5. Given: A 16, B 98, c 8.4 C 180 16 98 66 6. Given: A 95, B 45, c 104.8 C 180 A B 40 a c sin A 8.4 sin 16 2.53 sin C sin 66 a c sin A 104.8 sin 95 162.42 sin C sin 40 b c sin B 8.4 sin 98 9.11 sin C sin 66 b c sin B 104.8 sin 45 115.29 sin C sin 40 7. Given: A 24, C 48, b 27.5 B 180 24 48 108 8. Given: B 64, C 36, a 367 A 180 B C 80 a b sin A 27.5 sin 24 11.76 sin B sin 108 b a sin B 367 sin 64 334.95 sin A sin 80 c b sin C 27.5 sin 48 21.49 sin B sin 108 c a sin C 367 sin 36 219.04 sin A sin 80 9. Given: B 150, b 30, c 10 sin C c sin B 10 sin 150 0.1667 ⇒ C 9.59 b 30 A 180 150 9.59 20.41 b sin A 30 sin 20.41 a 20.92 sin B sin 150 11. A 75, a 51.2, b 33.7 sin B b sin A 33.7 sin 75 0.6358 ⇒ B 39.48 a 51.2 C 180 75 39.48 65.52 c a sin C 51.2 sin 65.52 48.24 sin A sin 75 10. Given: B 150, a 10, b 3 sin A a sin B 10 sin 150 1.67 > 1 b 3 No solution Review Exercises for Chapter 6 593 12. Given: B 25, a 6.2, b 4 sin A a sin B 0.65506 ⇒ A 40.92 or 139.08 b Case 1: A 40.92 Case 2: A 139.08 C 180 25 40.92 114.08 C 180 25 139.08 15.92 c 8.64 c 2.60 13. Area 12bc sin A 1257sin 27 7.9 14. B 80º, a 4, c 8 Area 12ac sin B 12480.9848 15.8 1 1 15. Area 2ab sin C 2165sin 123 33.5 16. A 11, b 22, c 21 Area 12 bc sin A 12 22210.1908 44.1 17. tan 17 h ⇒ h x 50 tan 17 x 50 h h x tan 17 50 tan 17 tan 31 31° x 17° 50 h ⇒ h x tan 31 x x tan 17 50 tan 17 x tan 31 50 tan 17 xtan 31 tan 17 50 tan 17 x tan 31 tan 17 x 51.7959 h x tan 31 51.7959 tan 31 31.1 meters The height of the building is approximately 31.1 meters. 18. 162 w2 122 2w12 cos 140 w2 24 cos 140w 112 0 ⇒ w 4.83 19. h 75 sin 17 sin 45 75 sin 17 h sin 45 45° 118° h 31.01 feet ft 75 62° 17° 28° 20. The triangle of base 400 feet formed by the two angles of sight to the tree has base angles of 90 22 30 67 30, or 67.5, and 90 15 75. The angle at the tree measures 180 67.5 75 37.5. 400 sin 75 b 634.683 sin 37.5 h 634.683 sin 67.5 h 586.4 The width of the river is about 586.4 feet. 45° Tree A N W E S 15° h 22° 30' C 400 ft B h 594 Chapter 6 Additional Topics in Trigonometry 21. Given: a 5, b 8, c 10 a2 cos C 2ab b2 c2 22. Given: a 80, b 60, c 100 0.1375 ⇒ C 97.90 a2 c2 b2 0.61 ⇒ B 52.41 2ac cos B a2 b2 c2 6400 3600 10,000 2ab 28060 cos C 0 ⇒ C 90 A 180 B C 29.69 sin A 80 0.8 ⇒ A 53.13º 100 sin B 60 0.6 ⇒ B 36.87º 100 23. Given: a 2.5, b 5.0, c 4.5 cos B a2 c2 b2 0.0667 ⇒ B 86.18 2ac cos C a2 b2 c2 0.44 ⇒ C 63.90 2ab A 180 B C 29.92 24. Given: a 16.4, b 8.8, c 12.2 cos A b2 c2 a2 8.82 12.22 16.42 0.1988 ⇒ A 101.47 2bc 28.812.2 sin B b sin A 8.8 sin 101.47 0.5259 ⇒ B 31.73 a 16.4 C 180 101.47 31.73 46.80 25. Given: B 110, a 4, c 4 b a2 c2 26. Given: B 150, a 10, c 20 2ac cos B 6.55 A C 12 180 110 35 b2 102 202 21020cos 150 ⇒ b 29.09 sin A a sin B 10 sin 150 ⇒ A 9.90 b 29.09 C 180 150 9.90 20.10 27. Given: C 43, a 22.5, b 31.4 c a2 b2 2ab cos C 21.42 cos B a2 c2 b2 0.02169 ⇒ B 91.24 2ac A 180 B C 45.76 28. Given: A 62, b 11.34, c 19.52 a2 11.342 19.522 211.3419.52 cos 62 ⇒ a 17.37 sin B b sin A 11.34 sin 62 ⇒ B 35.20 a 17.37 C 180 62 35.20 82.80 Review Exercises for Chapter 6 29. 5 ft 8 ft 8 ft 28° 5 ft 152° 30. 595 15 m a 20 m b 20 m 34° 15 m 146° s1 s2 a2 52 82 258cos 28 18.364 a 4.3 feet b2 82 52 285cos 152 159.636 b 12.6 feet s12 152 202 2 15 20 cos 34 127.58 s1 11.3 meters s22 15 2 202 2 15 20 cos 146 1122.42 s2 33.5 meters 31. Length of AC 3002 4252 2300425 cos 115 32. d 2 8502 10602 28501060 cos 72 1,289,251 615.1 meters d 1135 miles N W d 5° E S 850 67° 33. a 4, b 5, c 7 s 1060 34. a 15, b 8, c 10 abc 457 8 2 2 s 15 8 10 16.5 2 Area 16.51.58.56.5 36.979 Area ss as bs c 8431 9.80 35. a 12.3, b 15.8, c 3.7 s 36. a 38.1, b 26.7, c 19.4 a b c 12.3 15.8 3.7 15.9 2 2 Area ss as bs c s 38.1 26.7 19.4 42.1 2 Area 42.1415.422.7 242.630 15.93.60.112.2 8.36 37. u 4 22 6 12 61 v 6 02 3 22 61 38. u 3 12 2 42 210 v 1 32 4 22 210 u is directed along a line with a slope of 61 5 . 4 2 6 u is directed along a line with a slope of 2 4 3. 31 v is directed along a line with a slope of 3 2 5 . 60 6 v is directed along a line with a slope of 4 2 3. 1 3 Since u and v have identical magnitudes and directions, u v. 39. Initial point: 5, 4 Since u and v have identical magnitudes and directions, u v. 40. Initial point: 0, 1 Terminal point: 2, 1 7 Terminal point: 6, 2 v 2 5, 1 4 7, 5 v 6 0, 72 1 6, 52 596 Chapter 6 Additional Topics in Trigonometry 41. Initial point: 0, 10 42. Initial point: 1, 5 Terminal point: 7, 3 Terminal point: 15, 9 v 7 0, 3 10 7, 7 v 15 1, 9 5 14, 4 43. v 8, 120 8 cos 120, 8 sin 120 4, 43 45. u 1, 3, v 3, 6 1 44. v , 225 2 12 cos 225, 21 sin 225 42, 42 46. u 4, 5, v 0, 1 (a) u v 1, 3 3, 6 4, 3 (a) u v 4 0, 5 1 4, 4 (b) u v 1, 3 3, 6 2, 9 (b) u v 4 0, 5 1 4, 6 (c) 3u 31, 3 3, 9 (c) 3u 34, 35 12, 15 (d) 2v 5u 23, 6 51, 3 (d) 2v 5u 20, 21 54, 55 6, 12 5, 15 11, 3 47. u 5, 2, v 4, 4 0 20, 2 25 20, 23 48. u 1, 8, v 3, 2 (a) u v 5, 2 4, 4 1, 6 (a) u v 1 3, 8 2 4, 10 (b) u v 5, 2 4, 4 9, 2 (b) u v 1 3, 8 2 2, 6 (c) 3u 35, 2 15, 6 (c) 3u 31, 38 3, 24 (d) 2v 5u 24, 4 55, 2 (d) 2v 5u 23, 22 51, 58 8, 8 25, 10 17,18 49. u 2i j, v 5i 3j 6 5, 4 40 11, 44 50. u 7i 3j, v 4i j (a) u v 2i j 5i 3j 7i 2j (a) u v 7i 3j 4i j 3i 4j (b) u v 2i j 5i 3j 3i 4j (b) u v 7i 3j 4i j 11i 2j (c) 3u 32i j 6i 3j (c) 3u 37i 3j 21i 9j (d) 2v 5u 25i 3j 52i j (d) 2v 5u 8i 2j 35i 15j 10i 6j 10i 5j 20i j 51. u 4i, v i 6j 27i 17j 52. u 6j, v i j (a) u v 4i i 6j 3i 6j (a) u v 6j i j i 5j (b) u v 4i i 6j 5i 6j (b) u v 6j i j i 7j (c) 3u 34i 12i (c) 3u 18j (d) 2v 5u 2i 6j 54i (d) 2v 5u 2i 2j 30j 2i 12j 20i 18i 12j 2i 28j Review Exercises for Chapter 6 53. u 6i 5j, v 10i 3j 597 54. u 6i 5j, v 10i 3j 2u v 26i 5j 10i 3j 22i 7j 4u 5v 24i 20j 50i 15j 26i 35j y v 2 22, 7 26,35 x −5 10 −2 y 20 20 25 30 x − 60 −4 − 40 20 −5v 4u −6 −8 2u + v 2u 4u − 5v − 40 − 10 − 60 − 12 55. v 10i 3j 56. v 10i 3j y 3v 310i 3j 1 2v 20 30i 9j y 5i 32j 5, 32 8 6 10 30, 9 3v 4 v v 2 x 10 20 30 1 v 2 x 2 − 10 57. u 3, 4 3i 4j 58. u 6, 8 6i 8j 59. Initial point: 3, 4 60. Initial point: 2, 7 6 Terminal point: 5, 9 u 9 3i 8 4j 6i 4j u 5 2, 9 7 7, 16 7i 16j 62. v 4i j v 10 10 200 102 2 tan 2 10 1 ⇒ 135 since 10 v is in Quadrant II. v 102i cos 135 j sin 135 v 7cos 60 i sin 60 j v 42 12 17 tan 1 , in Quadrant IV ⇒ 346 4 v 17cos 346 i sin 346 j 64. v 3cos 150i sin 150 j v 3, 150 v 7 60 65. 66. v 4i 7j v 5i 4j v 52 42 41 tan 67. 8 Terminal point: 9, 8 61. v 10i 10j 63. 4 −2 4 ⇒ 38.7 5 v 3i 3j tan tan 7 , in Quadrant II ⇒ 119.7 4 68. v 8i j v 3 3 32 2 v 42 72 65 2 3 1 ⇒ 225 3 v 82 12 65 tan 1 , in Quadrant IV ⇒ 352.9 8 10 598 Chapter 6 Additional Topics in Trigonometry 69. Magnitude of resultant: 70. Rope One: 23i 21j c 852 502 28550 cos 165 u ucos 30i sin 30j u 133.92 pounds Rope Two: Let be the angle between the resultant and the 85-pound force. cos v u cos 30i sin 30j u 133.92 85 50 2133.9285 2 2 2 2 1 i j 2 Resultant: u v uj 180j 0.9953 u 180 ⇒ 5.6 Therefore, the tension on each rope is u 180 lb. 71. Airspeed: u 430cos 45i sin 45j 2152i j Wind: w 35cos 60 sin 60 j y u w N 135° W 35 i 3j 2 θ 35 353 i 2152 Groundspeed: u w 2152 2 2 215 2 35 2 2 E S x 45° u 353 2152 2 2 w 422.30 miles per hour Bearing: tan 17.53 2152 2152 17.5 40.4 90 130.4 72. Airspeed: u 724cos 60i sin 60j y 362i 3j Wind: w 32i Groundspeed u w 394i 3623j u w 3942 36232 740.5 kmhr tan 3 3623 ⇒ 57.9 394 724 30° x 32 Bearing: N 32.1 E 73. u 6, 7, v 3, 9 u v 63 79 45 75. u 3i 7j, v 11i 5j u v 311 75 2 77. u 3, 4 2u 6, 8 2u u 63 84 50 The result is a scalar. 74. u 7, 12, v 4, 14 u v 74 1214 140 76. u 7i 2j, v 16i 12j u v 716 212 136 78. v 2, 1 v2 v v 22 12 5; scalar Review Exercises for Chapter 6 79. u 3, 4, v 2, 1 599 80. u 3, 4, v 2, 1 u v 32 41 2 3u v 332 41 32 6; scalar uu v u2 2u 6, 8 The result is a vector. 81. u cos 7 7 1 1 , i sin j 2 2 4 4 82. u cos 45 i sin 45 j v cos 300 i sin 300 j v cos 3 1 5 5 i sin j , 6 6 2 2 cos 3 1 uv 11 ⇒ u v 22 12 Angle between u and v: 60 45 105 84. u 3, 3 , v 4, 33 83. u 22, 4, v 2, 1 cos uv 8 ⇒ 160.5 u v 243 86. u 85. u 3, 8 cos uv 21 ⇒ 22.4 u v 1243 14, 12, v 2, 4 87. u i v 8u ⇒ Parallel v 8, 3 v i 2j u v 38 83 0 u u and v are orthogonal. v ku ⇒ Not parallel v0 ⇒ Not orthogonal Neither 88. u 2i j, v 3i 6j u v0 ⇒ Orthogonal 89. u 4, 3, v 8, 2 w1 projvu v v 688, 2 174, 1 u v 26 w2 u w1 4, 3 u w1 w2 90. u 5, 6, v 10, 0 w1 projvu 50 10, 0 5, 0 uv vv 100 2 13 2 13 16 4, 1 1, 4 17 17 13 16 4, 1 1, 4 17 17 91. u 2, 7, v 1, 1 w1 projvu v v 2 1, 1 u v 5 2 w2 u w1 5, 6 5, 0 0, 6 5 1, 1 2 u w1 w2 5, 0 0, 6 w2 u w1 2, 7 521, 1 9 1, 1 2 5 9 u w1 w2 1, 1 1, 1 2 2 600 Chapter 6 Additional Topics in Trigonometry \ 93. P 5, 3, Q 8, 9 ⇒ PQ 3, 6 92. u 3, 5, v 5, 2 w1 projvu uv 25 v 5, 2 v2 29 \ w2 u w1 3, 5 u w1 w2 W v PQ 2, 7 3, 6 48 25 19 5, 2 2, 5 29 29 19 25 5, 2 2, 5 29 25 95. w 18,00048 12 72,000 foot-pounds 94. work v PQ \ 3i 6j 10i 17j 30 102 132 97. 7i 02 72 7 \ 96. W cos F PQ Imaginary axis cos 2025 pounds12 ft 10 281.9 foot-pounds 8 7i 6 4 2 −6 98. 6i 6 99. 5 3i 52 32 Imaginary axis 34 8 −2 2 4 Imaginary axis 5 + 3i 3 2 4 6 8 Real axis 2 1 −4 −6 −6i −1 −1 −8 100. 10 4i 102 42 229 tan 4 2 102. z 5 12i z tan 52 2 3 r 52 52 50 52 6 − 10 − 4i 1 101. 5 5i Imaginary axis −12 − 10 −8 − 6 Real axis 5 7 1 ⇒ since the 5 4 complex number is in Quadrant IV. −2 −4 5 5i 52 cos −6 7 7 i sin 4 4 103. 33 3i 122 13 12 ⇒ 1.176 5 z 13cos 1.176 i sin 1.176 Real axis −2 4 4 2 6 5 6 −8 −6 −4 −2 −4 r 33 2 32 36 6 tan 3 1 5 ⇒ 3 33 6 since the complex number is in Quadrant II. 33 3i 6 cos 5 5 i sin 6 6 4 5 Real axis Review Exercises for Chapter 6 601 z 7 104. z 7 tan 0 0 ⇒ 7 z 7cos i sin 105. (a) z1 23 2i 4 cos (a ) z2 10i 10 cos 3 3 i sin 2 2 11 11 i sin 6 6 10 10 i sin 3 3 (b) z1z2 4 cos 40 cos z1 z2 11 11 i sin 6 6 z2 23 i 4 cos 5 5 i sin 4 4 i sin 6 6 5 5 i sin 4 4 17 17 i sin 12 12 122 cos 5 (b) z1z2 32 cos 3 3 i sin 2 2 10 cos 107. 5 cos 11 11 i sin 6 6 2 cos i sin 3 3 5 3 3 i sin 10 cos 2 2 4 cos 106. (a) z1 31 i 32 cos z1 z2 4 cos 6 i sin 6 5 4 i sin 4 32 13 13 cos i sin 4 12 12 4 cos i sin 6 6 32 cos i sin 12 12 4 54 cos 4 4 i sin 12 12 625 cos 625 i sin 3 3 108. 4 4 2 cos 15 i sin 15 5 25 cos 32 12 23i 4 4 i sin 3 3 1 3 i 2 2 16 163i 625 6253 i 2 2 109. 2 3i6 13cos 56.3 i sin 56.36 110. 1 i8 2cos 315 i sin 315 8 133cos 337.9 i sin 337.9 16cos 2520 i sin 2520 13 0.9263 0.3769i 16cos 0 i sin 0 2035 828i 16 3 602 Chapter 6 Additional Topics in Trigonometry 111. Sixth roots of 729i 729 cos 3 3 : i sin 2 2 (a) and (c) (b) 6 729 cos 3 2k 2 6 i sin 3 2k 2 6 4 , k 0, 1, 2, 3, 4, 5 32 32 k 0: 3 cos i sin i 4 4 2 2 7 7 0.776 2.898i i sin 12 12 11 11 i sin 2.898 0.776i 12 12 5 5 32 32 i sin i 4 4 2 2 19 19 i sin 0.776 2.898i 12 12 23 23 i sin 2.898 0.776i 12 12 k 1: 3 cos k 2: 3 cos k 3: 3 cos k 4: 3 cos k 5: 3 cos Imaginary axis −4 −2 4 −2 −4 112. (a) 256i 256 cos i sin 2 2 (b) Imaginary axis 5 Fourth roots of 256i: 3 2k 2k 2 2 4 256 cos i sin , k 0, 1, 2, 3 4 4 i sin 8 8 5 5 i sin 8 8 9 9 i sin 8 8 13 13 i sin 8 8 k 0: 4 cos k 1: 4 cos k 2: 4 cos k 3: 4 cos 1 −3 −1 1 2 3 −2 −3 −5 (c) 3.696 1.531i 1.531 3.696i 3.696 1.531i 1.531 3.696i 113. Cube roots of 8 8cos 0 i sin 0, k 0, 1, 2 (a) and (c) 3 8 cos (b) 0 2k 0 2k i sin 3 3 Imaginary axis 3 k 0: 2cos 0 i sin 0 2 2 2 k 1: 2 cos i sin 1 3i 3 3 4 4 i sin 1 3i 3 3 k 2: 2 cos Real axis −3 −1 1 −3 3 Real axis 5 Real axis Review Exercises for Chapter 6 114. (a) 1024 1024cos i sin (b) Imaginary axis Fifth roots of 1024: 5 1024 cos 5 2k 2k , k 0, 1, 2, 3, 4 i sin 5 5 k 0: 4 cos i sin 5 5 k 1: 4 cos 3 3 i sin 5 5 7 7 i sin 5 5 9 9 i sin 5 5 k 4: 4 cos 2 3 Real axis 5 −5 (c) 3.236 2.351i k 2: 4cos i sin k 3: 4 cos 1 −3 −2 −1 1.236 3.804i 4 1.236 3.804i 3.236 2.351i 115. x4 81 0 x4 81 Solve by finding the fourth roots of 81. 81 81cos i sin 4 81 4 81 cos 2k 2k i sin , k 0, 1, 2, 3 4 4 Imaginary axis 4 32 32 k 0: 3 cos i sin i 4 4 2 2 3 3 32 32 i sin i 4 4 2 2 5 5 32 32 i sin i 4 4 2 2 7 7 32 32 i sin i 4 4 2 2 k 1: 3 cos k 2: 3 cos k 3: 3 cos 2 −4 −2 2 Real axis 4 −2 −4 116. x5 32 0 Imaginary axis x5 32 3 32 32cos 0 i sin 0 3 32 5 32 cos 0 2k 2k i sin 0 5 5 1 −3 −1 k 0, 1, 2, 3, 4 k 0: 2cos 0 i sin 0 2 2 2 i sin 0.6180 1.9021i 5 5 4 4 i sin 1.6180 1.1756i 5 5 6 6 i sin 1.6180 1.1756i 5 5 8 8 i sin 0.6180 1.9021i 5 5 k 1: 2 cos k 2: 2 cos k 3: 2 cos k 4: 2 cos −3 1 3 Real axis 603 604 Chapter 6 Additional Topics in Trigonometry 117. x3 8i 0 x3 Imaginary axis 8i Solve by finding the cube roots of 8i. 3 3 8i 8 cos i sin 2 2 3 8i 3 8 cos 3 2k 2 3 1 i sin i sin 2i 2 2 7 7 i sin 3 i 6 6 11 11 i sin 3 i 6 6 k 0: 2 cos k 1: 2 cos k 2: 2 cos 3 3 2 k 2 3 −3 , k 0, 1, 2 3 −1 Real axis −3 118. x3 1x2 1 0 Imaginary axis x3 1 0 2 x2 1 0 x3 1 −2 2 Real axis 1 1cos 0 i sin 0 3 3 1 1 cos 0 2k 0 2k i sin 3 3 , k 0, 1, 2 −2 1cos 0 i sin 0 1 2 2 1 3 i sin i 3 3 2 2 4 4 1 3 i sin i 3 3 2 2 1 cos 1 cos x2 1 0 x2 1 1 1cos i sin 1 1 cos 2k 2k i sin , k 0, 1 2 2 k 0, 1 i sin i 2 2 3 3 i sin i 2 2 1 cos 1 cos 119. True. sin 90 is defined in the Law of Sines. 120. False. There may be no solution, one solution, or two solutions. 121. True, by the definition of a unit vector. v so v vu u v 122. False, a b 0. Review Exercises for Chapter 6 123. False. x 3 i is a solution to x3 8i 0, not x2 8i 0. 124. a b c sin A sin B sin C or 605 sin A sin B sin C a b c Also, 3 i2 8i 2 23 8i 0. 125. a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B 126. A vector in the plane has both a magnitude and a direction. c2 a2 b2 2ab cos C 127. A and C appear to have the same magnitude and direction. 128. u v is larger in figure (a) since the angle between u and v is acute rather than obtuse. 129. If k > 0, the direction of ku is the same, and the magnitude is ku. 130. The sum of u and v lies on the diagonal of the parallelogram with u and v as its adjacent sides. If k < 0, the direction of ku is the opposite direction of u, and the magnitude is k u. 131. (a) The trigonometric form of the three roots shown is: 4cos 60 i sin 60 132. (a) The trigonometric forms of the four roots shown are: 4cos 60 i sin 60 4cos 180 i sin 180 4cos 150 i sin 150 4cos 300 i sin 300 (b) Since there are three evenly spaced roots on the circle of radius 4, they are cube roots of a complex number of modulus 43 64. Cubing them yields 64. 4cos 60 i sin 603 64 4cos 180 i sin 1803 64 4cos 240 i sin 240 4cos 330 i sin 330 (b) Since there are four evenly spaced roots on the circle of radius 4, they are fourth roots of a complex number of modulus 44. In this case, raising them to the fourth power yields 128 1283i. 4cos 300 i sin 3003 64 133. z1 2cos i sin z2 2cos i sin z1z2 22cos i sin 4cos i sin 4 z1 2cos i sin z2 2cos i sin 1cos i sin cos2 i sin2 cos 2 cos sin 2 sin isin 2 cos cos 2 sin cos 2 i sin 2 134. (a) z has 4 fourth roots. Three are not shown. (b) The roots are located on the circle at 30 90k, k 0, 1, 2, 3. The three roots not shown are located at 120, 210, 300. 606 Chapter 6 Additional Topics in Trigonometry Problem Solving for Chapter 6 \ 1. PQ 2 4.72 62 24.76 cos 25 P 4.7 ft \ PQ 2.6409 feet θ φ 25° sin sin 25 ⇒ 48.78 4.7 2.6409 O θ β 6 ft γ α Q T 180 25 48.78 106.22 180 ⇒ 180 106.22 73.78 106.22 73.78 32.44 180 180 48.78 32.44 98.78 180 180 98.78 81.22 \ PT 4.7 sin 25 sin 81.22 \ PT 2.01 feet 2. 3 mile 1320 yards 4 55° 300 yd 55° 35° 25° x2 13202 3002 21320300cos 10 θ 1320 yd x 1025.881 yards 0.58 mile x sin sin 10 1320 1025.881 sin 0.2234 180 sin10.2234 167.09 Bearing: 55 90 22.09 S 22.09 E 3. (a) A 75 mi 30° 15° 135° x y 60° Lost party (c) B 75° A 80° 20° 60° 10° 20 mi Rescue party 27.452 mi (b) x 75 y 75 and sin 15 sin 135 sin 30 sin 135 x 27.45 miles y 53.03 miles z Lost party z2 27.452 202 227.4520 cos 20 z 11.03 miles sin sin 20 27.45 11.03 sin 0.8511 180 sin10.8511 121.7 To find the bearing, we have 10 90 21.7. Bearing: S 21.7 E Problem Solving for Chapter 6 4. (a) (b) 65° sin C sin 65 46 52 sin C 46 ft 607 46 sin 65 0.801734 52 C 53.296 52 ft A 180 B C 61.704 1 (c) Area 4652sin 61.704 1053.09 square feet 2 Number of bags: a 52 sin 61.704 sin 65 1053.09 21.06 50 a a 50.52 feet To entirely cover the courtyard, you would need to buy 22 bags. 5. If u 0, v 0, and u v 0, then (a) u 1, 1, v 1, 2, u 2, (b) v 5, u 0, 1, (c) (d) u v 1 u v 3, 2 v 18 32, u v 13 21, 72 u 1, u uu vv uu vv 1 since all of these are magnitudes of unit vectors. u v 0, 1 v 3, 3, u 1, 52 sin 61.704 sin 65 5 2 v 2, 3, u v 3, v 13, u v , u 2, 4, v 5, 5, 9 494 85 2 u v 7, 1 u 20 25, v 50 52, u v 50 52 6. (a) u 120j 120 (d) tan 40 ⇒ tan1 3 ⇒ 71.565 v 40i (e) Up (b) s u v 40i 120j 140 120 100 Up 80 140 60 120 s 100 80 v u s W E −20 − 20 20 40 60 80 100 Down v 20 W − 60 E −60 60 40 u 20 40 60 80 100 Down (c) s 402 1202 16000 4010 126.49 miles per hour This represents the actual rate of the skydiver’s fall. s 30i 120j s 302 1202 15300 123.69 miles per hour 608 Chapter 6 Additional Topics in Trigonometry 8. Let u v 0 and u w 0. 7. Initial point: 0, 0 Terminal point: u 1 v1 u2 v2 , 2 2 Then, u cv dw u cv u dw cu v du w u v1 u2 v2 1 , w 1 u v 2 2 2 c0 d0 0. Initial point: u1, u2 Terminal point: w u v Thus for all scalars c and d, u is orthogonal to cv dw. 1 u v1, u2 v2 2 1 1 v1 u v2 u1, 2 u2 2 2 1 u1 v2 u2 1 , v u 2 2 2 → 9. W cos F PQ and F1 F2 (a) F1 If 1 2 then the work is the same since cos cos . θ1 θ2 F2 P (b) Q If 1 60 then W1 F1 60° F2 If 2 30 then W2 30° P Q → 1 F PQ 2 1 3 2 → F2 PQ W2 3 W1 The amount of work done by F2 is 3 times as great as the amount of work done by F1. 10. (a) 100 sin 100 cos 0.5 0.8727 99.9962 1.0 1.7452 99.9848 1.5 2.6177 99.9657 2.0 3.4899 99.9391 2.5 4.3619 99.9048 3.0 5.2336 99.8630 (b) No, the airplane’s speed does not equal the sum of the vertical and horizontal components of its velocity. To find speed: speed v sin2 v cos2 (c) (i) speed 5.235 2 149.909 2 150 miles per hour (ii) speed 10.463 2 149.634 2 150 miles per hour Practice Test for Chapter 6 Chapter 6 Practice Test For Exercises 1 and 2, use the Law of Sines to find the remaining sides and angles of the triangle. 1. A 40, B 12, b 100 2. C 150, a 5, c 20 3. Find the area of the triangle: a 3, b 6, C 130. 4. Determine the number of solutions to the triangle: a 10, b 35, A 22.5. For Exercises 5 and 6, use the Law of Cosines to find the remaining sides and angles of the triangle. 5. a 49, b 53, c 38 6. C 29, a 100, b 300 7. Use Heron’s Formula to find the area of the triangle: a 4.1, b 6.8, c 5.5. 8. A ship travels 40 miles due east, then adjusts its course 12 southward. After traveling 70 miles in that direction, how far is the ship from its point of departure? 9. w 4u 7v where u 3i j and v i 2j. Find w. 10. Find a unit vector in the direction of v 5i 3j. 11. Find the dot product and the angle between u 6i 5j and v 2i 3j. 12. v is a vector of magnitude 4 making an angle of 30 with the positive x-axis. Find v in component form. 13. Find the projection of u onto v given u 3, 1 and v 2, 4. 14. Give the trigonometric form of z 5 5i. 15. Give the standard form of z 6cos 225 i sin 225. 16. Multiply 7cos 23 i sin 23 4cos 7 i sin 7. 5 5 i sin 4 4 . 3cos i sin 9 cos 17. Divide 19. Find the cube roots of 8 cos 18. Find 2 2i8. i sin . 3 3 20. Find all the solutions to x4 i 0. 609