Download TLE2027-EP Excalibur™ LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIER FEATURES

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Phase-locked loop wikipedia , lookup

Test probe wikipedia , lookup

Wien bridge oscillator wikipedia , lookup

Analog-to-digital converter wikipedia , lookup

Multimeter wikipedia , lookup

TRIAC wikipedia , lookup

Josephson voltage standard wikipedia , lookup

Radio transmitter design wikipedia , lookup

Immunity-aware programming wikipedia , lookup

CMOS wikipedia , lookup

Amplifier wikipedia , lookup

Ohm's law wikipedia , lookup

Integrating ADC wikipedia , lookup

Transistor–transistor logic wikipedia , lookup

Two-port network wikipedia , lookup

Wilson current mirror wikipedia , lookup

Current source wikipedia , lookup

Valve audio amplifier technical specification wikipedia , lookup

Surge protector wikipedia , lookup

Power MOSFET wikipedia , lookup

Negative-feedback amplifier wikipedia , lookup

Power electronics wikipedia , lookup

Schmitt trigger wikipedia , lookup

Voltage regulator wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Operational amplifier wikipedia , lookup

Valve RF amplifier wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Current mirror wikipedia , lookup

Opto-isolator wikipedia , lookup

Rectiverter wikipedia , lookup

Transcript
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
FEATURES
•
•
•
•
•
•
(1)
Controlled Baseline
– One Assembly/Test Site, One Fabrication
Site
Extended Temperature Performance of
–55°C to 125°C
Enhanced Diminishing Manufacturing Sources
(DMS) Support
Enhanced Product-Change Notification
Qualification Pedigree(1)
Outstanding Combination of DC Precision and
AC Performance:
– Unity-Gain Bandwidth . . . 13 MHz Typ
– Vn . . . 3.3 nV/√Hz at f = 10 Hz Typ,
2.5 nV/√Hz at f = 1 kHz Typ
•
•
•
– VIO . . . 100 μV Max
– AVD . . . 45 V/μV Typ With RL = 2 kΩ,
19 V/μV Typ With RL = 600 Ω
Available in Standard-Pinout Small-Outline
Package
Output Features Saturation Recovery Circuitry
Macromodels and Statistical information
EGAKCAP D
)WEIV POT(
1N TESFFO
-NI
+NI
V
-CC
12N TES8FFO
7 +VCC
2
3
6TUO
4
5 CN
Component qualification in accordance with JEDEC and
industry standards to ensure reliable operation over an
extended temperature range. This includes, but is not limited
to, Highly Accelerated Stress Test (HAST) or biased 85/85,
temperature cycle, autoclave or unbiased HAST,
electromigration, bond intermetallic life, and mold compound
life. Such qualification testing should not be viewed as
justifying use of this component beyond specified
performance and environmental limits.
DESCRIPTION
The TLE2027 contains innovative circuit design expertise and high-quality process control techniques to produce
a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured
using TI's state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision
devices.
In the area of dc precision, the TLE2027 offers maximum offset voltages of 100 μV, common-mode rejection
ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/μV (typ).
The ac performance of the TLE2027 is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55°
of phase margin, and noise voltage specifications of 3.3 nV/√Hz and 2.5 nV/√Hz at frequencies of 10 Hz and
1 kHz, respectively.
The TLE2027 is available in a wide variety of packages, including the industry-standard 8-pin small-outline
version for high-density system applications. The device is characterized for operation over the full military
temperature range of –55°C to 125°C.
ORDERING INFORMATION (1)
(1)
(2)
PACKAGED DEVICES
TA
VIOmax AT
25°C
SMALL OUTLINE (2) (D)
–55°C to 125°C
100 μV
TLE2027MDREP
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
website at www.ti.com.
The D package is available taped and reeled with 2500 units/reel.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.
www.BDTIC.com/TI
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2007, Texas Instruments Incorporated
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
SYMBOL
OFFSET N1
IN+
+
IN-
-
OUT
OFFSET N2
2
www.BDTIC.com/TI
Submit Documentation Feedback
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
TLE202XY CHIP INFORMATION
This chip, when properly assembled, displays characteristics similar to the TLE202xC. Thermal compression or
ultrasonic bonding may be used on the doped-aluminum bonding pads. The chip may be mounted with
conductive epoxy or a gold-silicon preform.
STNEMNGISSA DAP GNIDNOB
)6(
)4(
)8(
)7(
)1(
1N TESFFO
+ NI
)6(
NI 2N TESFFO
)3(
+VCC
+
)2(
-
)7(
)6(
TUO
)4(
)8(
VCC
-
)5(
09
)3(
)7(
)4(
lacipyT sIiM 51 :ssenkcihT pihC
)2(
muminiM sliM 4
4 :sdaP gnidnoB
C 051 = xam T J
.%01 erA secnareloT
)2(
)1(
´
°
±
.sliM n)i3e(rA snoisnemiD llA
)8(
detcennoC y)l1la( nretnI si )4( niP
.pihC fo ediskcaB ot
37
www.BDTIC.com/TI
Submit Documentation Feedback
3
IN +
IN *
4
Q1
Q3
Q2
Q4
O FFS E T N 1
O FFS E T N 2
Q6
Q5
Q7
Q8
Q9
Q 11
R1
Q 10
R2
www.BDTIC.com/TI
Submit Documentation Feedback
R3
Q 16
Q 15
Q 12
Q 14
Q 18
Q 17
Q 13
R5
R4
Q 20
C1
R6
Q 22
Q 21
Q 23
Q 19
R 10
R 12
Q 29
Q 30
R 14
Q 34
C3
Q 33
Q 31
R 13
Q 32
R 18
C4
R 17
R 16
Transistors
Resistors
epiFET
Capacitors
61
26
1
4
Q 37
Q 38
VCC -
Q 35
Q 36
R 15
ACTUAL DEVICE COMPONENT
COUNT
R7
Q 26
Q 24
Q 28
R 11
C2
Q 25
R8
Q 27
R9
V CC+
R 19
Q 40
Q 41
Q 39
R 20
Q 47
Q 45
Q 43
R 22
Q 46
Q 44
R 21
Q 42
R 23
R 25
Q 54
Q 57
Q 56
Q 55
Q 60
Q 59
Q 58
R 24 R 26
Q 52
Q 53
Q 50
Q 51
Q 48
Q 49
Q 62
OUT
Q 61
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
SLOS511 – JUNE 2007
www.ti.com
EQUIVALENT SCHEMATIC
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
Absolute Maximum Ratings
(1)
over operating free-air temperature range (unless otherwise noted)
MIN
VCC+
Supply voltage (2)
VCC–
Supply voltage
(3)
VID
Differential input voltage
VI
Input voltage range (any input)
II
Input current (each input)
IO
Output current
(2)
(3)
(4)
(5)
V
±1.2
V
±1
mA
±50
mA
50
mA
Total current out of VCC–
50
mA
(4)
Unlimited
See Dissipation
Rating Table
Operating free-air temperature range
Storage temperature range
(5)
Lead temperature 1,6 mm (1/16 in) from case for 10 s
(1)
V
–19
Total current into VCC+
Continuous total power dissipation
Tstg
UNIT
19
VCC±
Duration of short-circuit current at (or below) 25°C
TA
MAX
–55
125
°C
–65
150
°C
260
°C
D package
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC– .
Differential voltages are at IN+ with respect to IN–. Excessive current flows if a differential input voltage in excess of approximately
±1.2 V is applied between the inputs, unless some limiting resistance is used.
The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation
rating is not exceeded.
Long-term high-temperature storage and/or extended use at maximum recommended operating conditions may result in a reduction of
overall device life. See http://www.ti.com/ep_quality for additional information on enhanced product packaging.
Dissipation Rating Table
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 105°C
POWER RATING
TA = 125°C
POWER RATING
D
725 mW
5.8 mW/°C
464 mW
261 mW
145 mW
Recommended Operating Conditions
VCC±
Supply voltage
VIC
Common-mode input voltage
TA
Operating free-air temperature
(1)
TA = 25°C
TA = Full range (1)
MIN
MAX
UNIT
±4
±19
V
–11
11
–10.3
10.3
–55
125
V
°C
Full range is –55°C to 125°C.
www.BDTIC.com/TI
Submit Documentation Feedback
5
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
Electrical Characteristics
at specified free-air temperature, VCC± = ±15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA (1)
TYP
MAX
20
100
UNIT
VIO
Input offset voltage
VIC = 0, RS = 50 Ω
αVIO
Temperature coefficient of input offset voltage
VIC = 0, RS = 50 Ω
Full range
0.4
μV/°C
Input offset voltage long-term drift (2)
VIC = 0, RS = 50 Ω
25°C
0.006
μV/mo
IIO
Input offset current
VIC = 0, RS = 50 Ω
25°C
6
IIB
Input bias current
VIC = 0, RS = 50 Ω
Full range
VICR
RL = 600 Ω
VOM+
Maximum positive peak output voltage swing
RL = 2 kΩ
25°C
RL = 600 Ω
VOM–
Maximum negative peak output voltage swing
RL = 2 kΩ
AVD
Large-signal differential voltage amplification
zo
Open-loop output impedance
IO = 0
CMRR
Common-mode rejection ratio
VIC = VICRmin,
RS = 50 Ω
ICC
(1)
(2)
Supply current
10
25°C
12
–10
25°C
–12
Full range
–11
5
25°C
3.5
1.8
nA
V
12.9
V
13.2
–13
V
–13.5
45
2
38
V/μV
19
25°C
8
pF
25°C
50
Ω
25°C
100
Full range
96
VCC± = ±4 V to ±18 V,
RS = 50 Ω
25°C
94
VCC± = ±4 V to ±18 V,
RS = 50 Ω
Full range
90
VO = 0, No load
nA
2.5
Full range
25°C
–13
to
13
μV
11
–10.5
Full range
25°C
VO = ±10 V, RL = 600 Ω
Supply-voltage rejection ratio (ΔVCC±/ΔVIO)
10.5
Full range
Input capacitance
kSVR
25°C
VO = ±10 V, RL = 2 kΩ
Ci
–11
to
11
Full range
25°C
90
150
Full range
VO = ±11 V, RL = 2 kΩ
VO = ±10 V, RL = 1 kΩ
15
–10.3
to
10.3
Full range
90
150
Full range
RS = 50 Ω
Common-mode input voltage range
200
Full range
25°C
6
MIN
25°C
131
dB
144
dB
25°C
Full range
3.8
5.3
5.6
mA
Full range is –55°C to 125°C.
Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
www.BDTIC.com/TI
Submit Documentation Feedback
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
Operating Characteristics
at specified free-air temperature, VCC± = ±15 V, TA = 25°C (unless otherwise noted)
PARAMETER
SR
TEST CONDITIONS
Slew rate at unity gain
MIN
TYP
RL = 2 kΩ, CL = 100 pF,
See Figure 1
1.7
2.8
RL = 2 kΩ, CL = 100 pF,
TA = –55°C to 125°C,
See Figure 1
1
f = 10 Hz
3.3
f = 1 kHz
2.5
Equivalent input noise voltage (see Figure 2)
RS = 20 Ω
VN(PP)
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 10 Hz
50
f = 10 Hz
1.5
f = 1 kHz
0.4
Equivalent input noise current
THD
Total harmonic distortion
VO = 10 V, AVD = 1 (1)
B1
Unity-gain bandwidth (see Figure 3)
RL = 2 kΩ, CL = 100 pF
BOM
Maximum output-swing bandwidth
RL = 2 kΩ
φm
Phase margin at unity gain (see Figure 3)
RL = 2 kΩ, CL = 100 pF
(1)
UNIT
V/μs
Vn
In
MAX
nV/√Hz
nV
pA/√Hz
<0.002%
13
MHz
30
kHz
55°
Measured distortion of the source used in the analysis was 0.002%.
www.BDTIC.com/TI
Submit Documentation Feedback
7
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
PARAMETER MEASUREMENT INFORMATION
R
k2 W
f
V 51
-
V 51
R
VO
VO
I
V
+
+
I
= C
V5
-1
Fp 001
)A etoN ees(
c erutxif sedulcni C :A ETON
L
k2= R
W
L
L
Figure 1. Slew-Rate Test Circuit
k 01
001
V
Figure 2. Noise-Voltage Test Circuit
W
R
-
-
I
R
V
V5
-1
= C
Fp 001
)A etoN ees(
L
I
+
= C
Fp 001
)A etoN ees(
k2 W
V5
-1
.ecnaticapac erutxif sedulcni C :A ETON
Figure 3. Unity-Gain Bandwidth and
Phase-Margin Test Circuit
8
VO
I
+
L
f
V 51
V 51
W
VO
sedulcni C :A ETON
V5
-1
02 W
02 W
L
k2 W
L
Figure 4. Small-Signal Pulse-Response Test Circuit
www.BDTIC.com/TI
Submit Documentation Feedback
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
DEVICE INFORMATION
Typical Values
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.
Initial Estimates of Parameter Distributions
In the ongoing program of improving data sheets and supplying more information to our customers, Texas
Instruments has added an estimate of not only the typical values but also the spread around these values.
These are in the form of distribution bars that show the 95% (upper) points and the 5% (lower) points from the
characterization of the initial wafer lots of this new device type (see Figure 5). The distribution bars are shown at
the points where data was actually collected. The 95% and 5% points are used instead of ±3 sigma since some
of the distributions are not true Gaussian distributions.
The number of units tested and the number of different wafer lots used are on all of the graphs where
distribution bars are shown. As noted in Figure 5, there were a total of 835 units from two wafer lots. In this
case, there is a good estimate for the within-lot variability and a possibly poor estimate of the lot-to-lot variability.
This is always the case on newly released products since there can only be data available from a few wafer lots.
The distribution bars are not intended to replace the minimum and maximum limits in the electrical tables. Each
distribution bar represents 90% of the total units tested at a specific temperature. While 10% of the units tested
fell outside any given distribution bar, this should not be interpreted to mean that the same individual devices fell
outside every distribution bar.
ÏÏÏÏÏÏÏÏÏÏÏÏÏ
Ï
ÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏ
Ï
Ï
LP
TP
NU
ES
RRUC Y
sv
AREPMET RIA-EERF
ERUT
5
rab noitubirtsid eht no tniop %59
VCC ± =V±51
)tniop siht evoba llef secived eht fo %5(
V0O=
5.d4aoL oN
reppu eht nihtiw erew secived eht fo %09
stinU 538 = eziS elpmaS
W 2 morF stoL reta rab noitubirtsid eht no stniop rewol dna
4
.
rab noitubirtsid eht no tniop %5
)tniop siht woleb llef secived eht fo %5(
Am − tnerruC ylpCpC
IuS −
5.3
3
5.2
57− 05− 52−
0
52
T riA-eerT
FA−− erutarepme
05
57 001 521 051
°C
Figure 5. Sample Graph With Distribution Bars
www.BDTIC.com/TI
Submit Documentation Feedback
9
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
Input offset voltage
Distribution
6,
ΔVIO
Input offset voltage change
vs
Time after power on
IIO
Input offset current
vs
Free-air temperature
9
vs
Free-air temperature
10
vs
Common-mode input voltage
11
7, 8
IIB
Input bias current
II
Input current
vs
Differential input voltage
VO(PP)
Maximum peak-to-peak output voltage
vs
Frequency
13, 14
VOM
Maximum (positive/negative) peak output voltage
vs
Load resistance
15, 16
17, 18
AVD
Large-signal differential voltage amplification
12
vs
Free-air temperature
vs
Supply voltage
19
vs
Load resistance
20
vs
Frequency
vs
Free-air temperature
23
21, 22
zo
Output impedance
vs
Frequency
24
CMRR
Common-mode rejection ratio
vs
Frequency
25
kSVR
Supply-voltage rejection ratio
vs
Frequency
vs
Supply voltage
27, 28
vs
Elapsed time
29, 30
vs
Free-air temperature
31, 32
vs
Supply voltage
33
vs
Free-air temperature
34
IOS
ICC
Short-circuit output current
Supply current
Voltage-follower pulse response
Vn
Equivalent input noise voltage
Noise voltage (referred to input)
B1
Unity-gain bandwidth
SR
Slew rate
φm
Phase margin
10
26
Small signal
35
Large signal
36
vs
Frequency
Over 10-s interval
37
38
vs
Supply voltage
39
vs
Load capacitance
40
vs
Free-air temperature
41
vs
Supply voltage
42
vs
Loadcapacitance
43
vs
Free-air temperature
44
www.BDTIC.com/TI
Submit Documentation Feedback
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
TYPICAL CHARACTERISTICS
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
NOITUBIRTSID
LOV TESFFO TUPNI
LOV TESFFO TUPNI
EGAT
NO REWOP RETFA EMIT
61
T sreifilpmA 8651 W 2 morF detse
VCC += V+51
41
5T
2A=
°C
egakcaP D
21
21
µV
stoL refa
− egatlo
01
01
Á
Á
Á
Á
Á
Á
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Á
Á
Á
Á
Á
Á
Á
Á
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Á
Á
Á
Á
Á
Á
Á
Á
Î
Î
Î
Î
ÎÎÎÎÎÎÎ
Á
Á
Á
Á
Á
Á
Á
Á
Î
Î
Î
Î
ÁÎÁÁÁÁÁ
Á
Á
Î
Î
Î
ÁÁ
4
2
06 − 03 −
V tesffO tupVnOII−
0
03
− egatlo
06
06
µV
Figure 6.
LOV TESFFO TUPNI
EGNAHC EGTA
sv
6
µV
− egatlo
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
ÁÁÁÁÁÁÁÁ
TNERRUC TESFFO TUPNI
sv
ERUT
VCC ±= V±51
V0
CI=
52 stinU 338 = eziS elpmaS
W 2 morF stoL refa
4
02
3
51
2
01
T sreifilpmA 05W 2 morF detse
VCC ±= V±51
1
5T
2A=
°C
egakcaP P
0
04 02
0
V tesffO tupnI ni egnahC − O
AIV
V
∆
OI
06
Figure 7.
03
5
08
04
stoL refa
AREPMET RIA-EERF
NO REWOP RETFA EMIT
01
05
09
T sreifilpmA 05W 2 morF detse
VCC ±= V±51
2
5T
2A=
°C
egakcaP D
0
03
020
01
s − nO rewoP reT
tfA
−t emi
V tesffO tupnI ni egnahC − O∆
AIV
V
OI
4
stoL refa
s − nO rewoP rTet−fAt emi
An − tnerruC tesffO tupnI − OO
II I
fo egatnecreP% − sreifilpmA
6
ÎÎÎÎÎÎÁÎÎÁÎÎÎÎÎÎ
ÎÎÎÁÁÎÁÎÁÎÎÎÎÎÎ
ÁÁÎÁÁÎÎÎ
8
6
8
0
021 −02109 −
EGNAHC EGTA
sv
5
0
57 − 05 − 52 −
era serutarepme
:At EwToOl Ndna hagtaihD ta
gnitarepo detarelbeahct ilpnpihatiw ylno
segnar reiar-ueta
ere
f pmet
.secived
Figure 8.
0
52
05
57 001 521 051
T riA-eerT
FA−− erutarepme
suoirav eht fo
Figure 9.
www.BDTIC.com/TI
Submit Documentation Feedback
°C
11
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
TYPICAL CHARACTERISTICS (continued)
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
VCC± = ±15 V
VIC = 0
Sample Size = 836 Units
From 2 Wafer Lots
IIIB
IB − Input Bias Current − nA
50
40
30
20
10
0
40
35
IIIB
IB − Input Bias Current − nA
60
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
VCC± = ±15 V
TA = 25°C
30
25
20
15
10
−10
5
−20
−75 −50 −25 0
25 50 75 100 125 150
TA − Free-Air Temperature − °C
0
−12
−8
−4
0
4
8
VIC − Common-Mode Input Voltage − V
12
NOTE A: Data at high and low temperatures are applicable
only within the rated operating free-air
temperature ranges of the various devices.
Figure 10.
Figure 11.
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
INPUT CURRENT
vs
DIFFERENTIAL INPUT VOLTAGE
0.8
IIII − Input Current − mA
0.6
0.4
VCC± = ±15 V
VIC = 0
TA = 25°C
0.2
0
−0.2
−0.4
−0.6
−0.8
−1
−1.8
−1.2
−0.6
0
0.6
1.2
VID − Differential Input Voltage − V
1.8
VO(PP) − Maximum Peak-to-Peak Output Voltage − V
1
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
FREQUENCY
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
30
VCC± = ±15 V
RL = 2 kΩ
25
20
15
TA = 125°C
10
5
TA = −55°C
0
10 k
100 k
1M
10 M
f − Frequency − Hz
NOTE A: Data at high and low temperatures are applicable only
within the rated operating free-air temperature ranges of
the various devices.
Figure 12.
12
Figure 13.
www.BDTIC.com/TI
Submit Documentation Feedback
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
TYPICAL CHARACTERISTICS (continued)
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÏÏÏÏÏ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÏÏÏÏÏ
ÁÁÁÁÁ
ÏÏÏÏÏ
ÁÁÁÁÁ
ÏÏÏÏÏ
ÁÁÁÁÁ
ÏÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
30
VCC± = ±15 V
RL = 2 kΩ
25
20
15
TA = 125°C
10
TA = −55°C
5
0
10 k
100 k
1M
10 M
100 M
f − Frequency − Hz
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
vs
LOAD RESISTANCE
VVOM+
OM+ − Maximum Positive Peak Output Voltage − V
VO(PP)
VO(PP) − Maximum Peak-to-Peak Output Voltage − V
TLE2037
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
FREQUENCY
14
12
10
8
ÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁ
ÁÁ
6
4
VCC± = ±15 V
TA = 25°C
2
0
100
1k
RL − Load Resistance − Ω
10 k
Figure 14.
Figure 15.
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
vs
LOAD RESISTANCE
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
−14
−12
−10
−8
−6
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
−4
−2
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
0
100
VCC± = ±15 V
TA = 25°C
1k
RL − Load Resistance − Ω
10 k
VVOM+
OM + − Maximum Positive Peak Output Voltage − V
VVOM−
OM − − Maximum Negative Peak Output Voltage − V
NOTE A: Data at high and low temperatures are applicable
only within the rated operating free-air temperature
ranges of the various devices.
13.5
13.4
13.3
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏÏ
ÏÏÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏÏ
ÏÏÏÏÏÏÏ
ÏÏÏÏÏÏ
ÏÏÏÏÏÏÏ
ÏÏÏÏÏÏ
VCC± = ±15 V
RL = 2 kΩ
Sample Size = 832 Units
From 2 Wafer Lots
13.2
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
13.1
13
12.9
−75 −50 −25
0
25
50
75
100 125 150
TA − Free-Air Temperature − °C
NOTE A: Data at high and low temperatures are applicable
only within the rated operating free-air
temperature ranges of the various devices.
Figure 16.
Figure 17.
www.BDTIC.com/TI
Submit Documentation Feedback
13
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
VCC± = ±15 V
RL = 2 kΩ
Sample Size = 831 Units
From 2 Wafer Lots
−13.2
−13.4
−13.6
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
−13.8
−14
−75 −50 −25
0
25
50
75
100 125 150
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
50
TA = 25°C
RL = 1 kΩ
30
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
20
RL = 600 Ω
10
0
0
TA − Free-Air Temperature − °C
4
Figure 18.
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
AVD
AVD − Large-Signal Differential
Voltage Amplification − dB
AVD
AVD − Large-Signal differential
Voltage Amplification − V/ µ V
Phase Shift
140
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
30
20
10
AVD
100
150°
80
175°
60
200°
40
20
225°
VCC± = ±15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
0.1
400
1k
2k
4k
250°
10 k
100
100 k
f − Frequency − Hz
RL − Load Resistance − Ω
Figure 20.
14
100°
125°
120
0
200
20
75°
160
TA = 25°C
0
100
16
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
VCC± = ±15 V
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
12
Figure 19.
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
40
8
 VCC± − Supply Voltage − V
NOTE A: Data at high and low temperatures are applicable
only within the rated operating free-air temperature
ranges of the various devices.
50
RL = 2 kΩ
40
Figure 21.
www.BDTIC.com/TI
Submit Documentation Feedback
275°
100 M
Phase Shift
−13
AVD
A
VD − Large-Signal differential
Voltage Amplification − V/ µ V
VVOM−
OM − − Maximum Negative Peak Output Voltage − V
TYPICAL CHARACTERISTICS (continued)
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
TYPICAL CHARACTERISTICS (continued)
100°
3
125°
0
150°
175°
AVD
−6
200°
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Phase Shift
−9
−12
225°
250°
VCC± = ±15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
−15
−18
10
275°
20
40
70
300°
100
60
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
VCC± = ±15 V
AVD
A
VD − Large-Signal differential
Voltage Amplification − V/ µ V
6
−3
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
Phase Shift
AVD
AVD − Large-Signal Differential
Voltage Amplification − dB
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
f − Frequency − MHz
50
RL = 2 kΩ
RL = 1 kΩ
40
30
−75 −50 −25
0
25
50
75
100 125 150
TA − Free-Air Temperature − °C
NOTE A: Data at high and low temperatures are applicable only
within the rated operating free-air temperature ranges
of the various devices.
Figure 22.
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÏÏÏÏÏ
ÁÁÁÁ
ÁÁÁÁ
ÏÏÏÏ
ÏÏÏÏÏ
ÁÁÁÁ
ÏÏÏÏ
ÏÏÏÏÏ
ÁÁÁÁ
ÏÏÏÏ
ÏÏÏÏÏ
ÁÁÁÁ
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
OUTPUT IMPEDANCE
vs
FREQUENCY
100
140
VCC± = ±15 V
TA = 25°C
10
AVD = 100
See Note A
1
AVD = 10
−10
−100
10
100
1k
10 k
100 k
1M
10 M 100 M
CMRR − Common-Mode Rejection Ratio − dB
zzo
o − Output Impedance − Ω
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Figure 23.
VCC± = ±15 V
TA = 25°C
120
100
80
60
40
20
0
10
f − Frequency − Hz
NOTE A: For this curve, AVD = 1
Figure 24.
100
1k
10 k 100 k 1 M
f − Frequency − Hz
10 M 100 M
Figure 25.
www.BDTIC.com/TI
Submit Documentation Feedback
15
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
TYPICAL CHARACTERISTICS (continued)
ÏÏÏÏÏ
ÁÁÁÁ
ÁÁÁÁ
ÏÏÏÏ
ÏÏÏÏÏ
ÁÁÁÁ
ÏÏÏÏÏ
ÏÏÏÏ
ÁÁÁÁ
ÏÏÏÏ
ÏÏÏÁÁÁÁ
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÁÁ
ÏÏÏ
ÁÁ
ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÏÏÏÏ
ÁÁÁÁÁ
ÏÏÏÏ
ÁÁÁÁÁ
ÏÏÏÏ
ÁÁÁÁÁ
ÏÏÏÏ
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
−42
VCC± = ±15 V
TA = 25°C
120
100
IOS − Short-Circuit Output Current − mA
I OS
KSVR − Supply-Voltage Rejection Ratio − dB
140
kSVR −
80
60
kSVR +
40
20
0
10
VID = 100 mV
VO = 0
TA = 25°C
P Package
−40
−38
−36
−34
−32
−30
100
1k
10 k 100 k 1 M
f − Frequency − Hz
10 M 100 M
0
2
4
6
8 10 12 14 16
 VCC± − Supply Voltage − V
Figure 26.
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
40
−45
VID = −100 mV
VO = 0
TA = 25°C
P Package
38
36
34
32
30
0
2
4
6
8 10 12 14 16
 VCC± − Supply Voltage − V
18
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÏÏÏÏÏ
ÁÁÁÁÁÁ
ÏÏÏÏÏ
ÁÁÁÁÁÁ
ÏÏÏÏÏ
SHORT-CIRCUIT OUTPUT CURRENT
vs
ELAPSED TIME
IOS − Short-Circuit Output Current − mA
I OS
IOS − Short-Circuit Output Current − mA
I OS
ÁÁ
ÁÁ
ÁÁ
ÁÁ
42
20
ÁÁ
ÁÁ
ÁÁ
ÁÁ
−43
VCC± = ±15 V
VID = 100 mV
VO = 0
TA = 25°C
P Package
−41
−39
−37
−35
0
Figure 28.
16
20
Figure 27.
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
44
18
30
60
90
120
t − Elapsed Time − s
Figure 29.
www.BDTIC.com/TI
Submit Documentation Feedback
150
180
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
TYPICAL CHARACTERISTICS (continued)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÏÏÏÏÏ
ÁÁÁÁÁ
ÏÏÏÏÏ
ÁÁÁÁÁ
ÏÏÏÏÏ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
SHORT-CIRCUIT OUTPUT CURRENT
vs
ELAPSED TIME
ÁÁ
ÁÁ
ÁÁ
ÁÁ
42
40
−48
VCC ± = ±15 V
VID = 100 mV
VO = 0
TA = 25°C
P Package
IOS − Short-Circuit Output Current − mA
I OS
IOS − Short-Circuit Output Current − mA
I OS
44
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
ÁÁ
ÁÁ
ÁÁ
ÁÁ
38
36
34
0
30
60
90
120
t − Elapsed Time − s
150
180
VCC± = ±15 V
VID = 100 mV
VO = 0
P Package
−44
−40
−36
−32
−28
−24
−75 −50 −25 0
25 50 75 100 125 150
TA − Free-Air Temperature − °C
NOTE A: Data at high and low temperatures are applicable only
within the rated operating free-air temperature ranges
of the various devices.
Figure 30.
Figure 31.
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
42
38
VCC± = ±15 V
VID = − 100 mV
VO = 0
P Package
6
5
ÁÁ
ÁÁ
ÁÁ
ÁÁ
34
ÁÁ
ÁÁ
ÁÁ
ÁÁ
30
26
−75 −50 −25 0
25 50 75 100 125 150
TA − Free-Air Temperature − °C
NOTE A: Data at high and low temperatures are applicable only
within the rated operating free-air temperature ranges
of the various devices.
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
VO = 0
No Load
IICC
CC − Supply Current − mA
IOS − Short-Circuit Output Current − mA
I OS
46
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
TA = 125°C
4
TA = 25°C
3
TA = −55°C
2
1
0
0
2
4
6
8 10 12 14 16
 VCC± − Supply Voltage − V
18
20
NOTE A: Data at high and low temperatures are applicable
only within the rated operating free-air temperature
ranges of the various devices.
Figure 32.
Figure 33.
www.BDTIC.com/TI
Submit Documentation Feedback
17
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
TYPICAL CHARACTERISTICS (continued)
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
IICC
CC − Supply Current − mA
4.5
ÁÁ
ÁÁ
ÁÁ
ÁÁ
100
VCC± = ±15 V
VO = 0
No Load
Sample Size = 836 Units
From 2 Wafer Lots
VO − Output Voltage − mV
5
4
3.5
3
2.5
25 50 75 100 125 150
−75 −50 −25 0
TA − Free-Air Temperature − °C
NOTE A: Data at high and low temperatures are applicable
only within the rated operating free-air temperature
ranges of the various devices.
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
VO − Output Voltage − V
10
5
0
−50
−100
0
VCC± = ±15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 1
0
−5
−10
400
600
t − Time − ns
800
1000
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
VCC± = ±15 V
RS = 20 Ω
TA = 25°C
See Figure 2
Sample Size = 100 Units
From 2 Wafer Lots
8
6
4
2
0
−15
0
5
10
15
t − Time − µs
20
25
1
10
100
1k
f − Frequency − Hz
Figure 36.
18
200
Figure 35.
10
Vn
V
nV/ Hz
n − Equivalent Input Noise Voltage − nVHz
15
50
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Figure 34.
VCC± = ±15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 4
Figure 37.
www.BDTIC.com/TI
Submit Documentation Feedback
10 k
100 k
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
TYPICAL CHARACTERISTICS (continued)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
NOISE VOLTAGE
(REFERRED TO INPUT)
OVER A 10-S INTERVAL
50
20
30
20
B1 − Unity-Gain Bandwidth − MHz
VCC± = ±15 V
f = 0.1 to 10 Hz
TA = 25°C
40
Noise Voltage − nV
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
10
0
−10
−20
−30
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 3
18
16
14
12
−40
−50
0
2
4
6
8
10
10
0
2
t − Time − s
4
6
8 10 12 14 16 18
| VCC± | − Supply Voltage − V
Figure 38.
SLEW RATE
vs
FREE-AIR TEMPERATURE
3
VCC± = ±15 V
RL = 2 kΩ
TA = 25°C
See Figure 3
2.8
12
SR − Slew Rate − V/ µs
B1 − Unity-Gain Bandwidth − MHz
22
Figure 39.
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
16
20
8
2.6
2.4
4
2.2
0
100
1000
CL − Load Capacitance − pF
10000
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
VCC± = ±15 V
AVD = 1
RL = 2 kΩ
CL = 100 pF
See Figure 1
2
− 75 − 50 − 25
0
25
50
75
100
125 150
TA − Free-Air Temperature − °C
NOTE A: Data at high and low temperatures are applicable only
within the rated operating free-air temperature ranges
of the various devices.
Figure 40.
Figure 41.
www.BDTIC.com/TI
Submit Documentation Feedback
19
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
TYPICAL CHARACTERISTICS (continued)
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
PHASE MARGIN
vs
LOAD CAPACITANCE
PHASE MARGIN
vs
SUPPLY VOLTAGE
60°
58°
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 3
φ m − Phase Margin
54°
ÁÁ
ÁÁ
ÁÁ
ÁÁ
52°
50°
48°
46°
40°
30°
20°
10°
44°
42°
0
2
4
6
VCC± = ±15 V
RL = 2 kΩ
TA = 25°C
See Figure 3
50°
φ m − Phase Margin
56°
8
10
12
14
16
18
20
0°
22
100
| VCC± | − Supply Voltage − V
1000
CL − Load Capacitance − pF
Figure 42.
Figure 43.
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
65°
VCC± = ±15 V
RL = 2 kΩ
TA = 25°C
See Figure 3
φ m − Phase Margin
60°
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
55°
50°
45°
40°
35°
−75
−50 −25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
150
NOTE A: Data at high and low temperatures are applicable only
within the rated operating free-air temperature ranges
of the various devices.
Figure 44.
20
www.BDTIC.com/TI
Submit Documentation Feedback
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
APPLICATION INFORMATION
Input Offset Voltage Nulling
The TLE2027 series offers external null pins that can be used to further reduce the input offset voltage. The
circuits of Figure 45 can be connected as shown if the feature is desired. If external nulling is not needed, the
null pins may be left disconnected.
k1 W
k 01
W
+VCC
k 7.4
+VCC
W
k 7.4
NI -
NI -
-
TUO
TUO
+NI
+
+
+ NI
VCC
W
VCC
-
-
MTSUJDA DRADNATS )a(
Figure 45. Input Offset Voltage Nulling Circuits
Voltage-Follower Applications
The TLE2027 circuitry includes input-protection diodes to limit the voltage across the input transistors; however,
no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur
when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It is
recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent degradation
of the device. Also, this feedback resistor forms a pole with the input capacitance of the device. For feedback
resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem can be
alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 46).
Fp 05 ot 02 = C
F
Am 1
R
IF £
F
VCC
VO
V
I
+
VCC
-
Figure 46. Voltage Follower
www.BDTIC.com/TI
Submit Documentation Feedback
21
TLE2027-EP
Excalibur™ LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIER
www.ti.com
SLOS511 – JUNE 2007
APPLICATION INFORMATION (continued)
Macromodel Information
Macromodel information provided was derived using Microsim Parts™, the model generation software used with
Microsim PSpice™. The Boyle macromodel (see Note and Figure 47) and subcircuit (see Figure 48) were
generated using the TLE202x7 typical electrical and operating characteristics at 25°C. Using this information,
output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
•
•
•
•
•
•
•
•
•
•
•
•
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Gain-bandwidth product
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE:
G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of
Integrated Circuit Operational Amplifiers", IEEE Journal of Solid-State Circuits, SC-9,
353 (1974).
99
+
3
+V
CC
dnge
9
1cr
2cr
1c
pr
1
+NI
2
-
cv
2Q
2r
-
pd
31
2C
6
+
eec
2er
7
35
eer
41
milh
-
+
1Q
-NI
29
09
pid +
2or
bv
21
11
-
+
nld
bf
cd
1er
mcg
ag
milv
-
8
01
1or
eel
45
VCC
-
4
+
ed
5
ev
TUO
Figure 47. Boyle Macromodel
2 1 7202ELT tkcbus.
*
00.4
21
11
1c
0.0 2
7
6
2c
zd
35
5
cd
zd
5
45
ed
zd
19
09
pld
xd
09
29
nld
zd
3
4
pd
0
99
dnge
5. 5 0 )0,4(
99
7
bf
1− 6E8.459 0 nlv plv
0
6
ag
3-E260.2
6
0
mcg
21-E3.135
4
01
eei
0
09
milh
2
11
1q
)0,3( )2(ylop
ev cv bv )5(ylop
21
11
99
01
6-E10.65 cd
K1 milv
xq 31
3E0.001
5.035
5.035
2.393−
2.393−
6E175.3
52
52
3E310.8
1
21
2q
9
6
2r
11
3
1cr
21
3
2cr
01
31
1er
01
41
2er
99
01
eer
5
8
1or
99
7
2or
4
3
pr
0
9
bv
35
3
cv
4
45
ev
8
7
milv
0
19
plv
29
0
nlv
)81-E0l
.e
0d
0o
8m
=s
.I(D xd
81-E0.0l
0e
8d
=o
sm
I(
.NPN xq
)3E000.7=fB
sdne.
xq 41
0
004.2
001.2
0
04
04
cd
cd
cd
cd
cd
cd
Figure 48. TLE2027 Macromodel Subcircuit
22
www.BDTIC.com/TI
Submit Documentation Feedback
19
+
piv
-
niv
+
PACKAGE OPTION ADDENDUM
www.ti.com
18-Sep-2008
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLE2027MDREP
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
V62/06674-01XE
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLE2027-EP :
TLE2027
• Catalog:
• Military: TLE2027M
NOTE: Qualified Version Definitions:
- TI's standard catalog product
• Catalog
• Military - QML certified for Military and Defense Applications
www.BDTIC.com/TI
Addendum-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
13-Dec-2010
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
TLE2027MDREP
Package Package Pins
Type Drawing
SOIC
D
8
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
2500
330.0
12.4
6.4
B0
(mm)
K0
(mm)
P1
(mm)
5.2
2.1
8.0
www.BDTIC.com/TI
Pack Materials-Page 1
W
Pin1
(mm) Quadrant
12.0
Q1
PACKAGE MATERIALS INFORMATION
www.ti.com
13-Dec-2010
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
TLE2027MDREP
SOIC
D
8
2500
346.0
346.0
29.0
www.BDTIC.com/TI
Pack Materials-Page 2
www.BDTIC.com/TI
www.BDTIC.com/TI
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Audio
www.ti.com/audio
Communications and Telecom www.ti.com/communications
Amplifiers
amplifier.ti.com
Computers and Peripherals
www.ti.com/computers
Data Converters
dataconverter.ti.com
Consumer Electronics
www.ti.com/consumer-apps
DLP® Products
www.dlp.com
Energy and Lighting
www.ti.com/energy
DSP
dsp.ti.com
Industrial
www.ti.com/industrial
Clocks and Timers
www.ti.com/clocks
Medical
www.ti.com/medical
Interface
interface.ti.com
Security
www.ti.com/security
Logic
logic.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Power Mgmt
power.ti.com
Transportation and
Automotive
www.ti.com/automotive
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
Wireless
www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions
www.ti.com/lprf
TI E2E Community Home Page
e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated
www.BDTIC.com/TI