Download BFR360L3

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
BFR360L3
Low Noise Silicon Bipolar RF Transistor
• Low voltage/ Low current operation
• For low noise amplifiers
• For Oscillators up to 3.5 GHz and Pout > 10 dBm
• Low noise figure: 1.0 dB at 1.8 GHz
• Pb-free (RoHS compliant) and halogen-free thin small
leadless package
• Qualification report according to AEC-Q101 available
BDTIC
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type
BFR360L3
Marking
FB
Pin Configuration
1=B
2=E
3=C
Package
TSLP-3-1
Maximum Ratings at TA = 25 °C, unless otherwise specified
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCEO
6
Collector-emitter voltage
VCES
15
Collector-base voltage
VCBO
15
Emitter-base voltage
VEBO
2
Collector current
IC
35
Base current
IB
4
Total power dissipation1)
Ptot
210
mW
Junction temperature
TJ
150
°C
Storage temperature
TStg
V
mA
TS ≤ 104°C
-55 ... 150
Thermal Resistance
Parameter
Symbol
Junction - soldering point2)
RthJS
1T
S is
2For
Value
Unit
220
K/W
measured on the collector lead at the soldering point to the pcb
the definition of RthJS please refer to Application Note AN077 (Thermal Resistance Calculation)
1
www.BDTIC.com/infineon
2013-09-03
BFR360L3
Electrical Characteristics at T A = 25 °C, unless otherwise specified
Symbol
Parameter
Values
Unit
min.
typ.
max.
V(BR)CEO
6
9
-
V
ICES
-
-
10
µA
ICBO
-
-
100
nA
IEBO
-
-
1
µA
hFE
90
120
160
DC Characteristics
Collector-emitter breakdown voltage
IC = 1 mA, I B = 0
Collector-emitter cutoff current
VCE = 15 V, VBE = 0
Collector-base cutoff current
BDTIC
VCB = 5 V, IE = 0
Emitter-base cutoff current
VEB = 1 V, IC = 0
DC current gain
-
IC = 15 mA, VCE = 3 V, pulse measured
2
www.BDTIC.com/infineon
2013-09-03
BFR360L3
Electrical Characteristics at TA = 25 °C, unless otherwise specified
Parameter
Symbol
Values
Unit
min.
typ.
max.
11
14
-
Ccb
-
0.26
0.4
Cce
-
0.15
-
Ceb
-
0.42
-
AC Characteristics (verified by random sampling)
Transition frequency
fT
GHz
IC = 15 mA, VCE = 3 V, f = 1 GHz
Collector-base capacitance
pF
VCB = 5 V, f = 1 MHz, VBE = 0 ,
emitter grounded
Collector emitter capacitance
BDTIC
VCE = 5 V, f = 1 MHz, VBE = 0 ,
base grounded
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz, VCB = 0 ,
collector grounded
Minimum noise figure
dB
NFmin
IC = 3 mA, VCE = 3 V, ZS = ZSopt , f = 1.8 GHz
-
1
-
IC = 3 mA, VCE = 3 V, ZS = ZSopt , f = 3 GHz
-
1.3
-
-
16
-
-
11.5
-
Power gain, maximum available1)
Gma
IC = 15 mA, VCE = 3 V, ZS = ZSopt ,
ZL = ZLopt , f = 1.8 GHz
IC = 15 mA, VCE = 3 V, ZS = ZSopt ,
ZL = ZLopt , f = 3 GHz
|S21e|2
Transducer gain
dB
IC = 15 mA, VCE = 3 V, ZS = ZL = 50Ω ,
f = 1.8 GHz
-
13.5
-
f = 3 GHz
-
9
-
IP3
-
24
-
P-1dB
-
9
-
Third order intercept point at output2)
dBm
VCE = 3 V, IC = 15 mA, ZS =ZL =50 Ω, f = 1.8 GHz
1dB compression point at output
IC = 15 mA, VCE = 3 V, ZS =ZL =50 Ω, f = 1.8 GHz
1/2
ma = |S21e / S12e | (k-(k²-1) )
2IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz
1G
3
www.BDTIC.com/infineon
2013-09-03
BFR360L3
Total power dissipation P tot = ƒ(TS)
Permissible Pulse Load RthJS = ƒ(tp)
10 3
240
mW
k/W
RthJS
Ptot
180
150
10 2
120
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0
BDTIC
90
60
30
0
0
15
30
45
60
75
90 105 120 °C
10 1 -7
10
150
10
-6
10
-5
10
-4
10
-3
10
-2
TS
s
10
0
tp
Permissible Pulse Load
Collector-base capacitance Ccb = ƒ(VCB )
Ptotmax/PtotDC = ƒ(tp )
f = 1MHz
10 1
0.8
P totmax/PtotDC
pF
0.6
Ccb
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
0.5
0.4
0.3
0.2
0.1
10 0 -7
10
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
0
0
2
4
6
8
tp
10
12
V
16
VCB
4
www.BDTIC.com/infineon
2013-09-03
BFR360L3
Third order Intercept Point IP3=ƒ(IC)
Transition frequency fT= ƒ(IC)
(Output, ZS=ZL=50Ω)
f = 1 GHz
VCE = parameter, f = 1.8 GHz
VCE = parameter
30
18
GHz
dBm
14
5V
20
3V
fT
IP3
12
15
10
2V
BDTIC
6V
4V
3V
2V
1V
10
5
8
1V
6
0.7V
4
0
-5
0
2
5
10
15
20
25
mA
30
0
0
40
5
10
15
20
25
30
IC
40
IC
Power gain Gma, Gms = ƒ(IC )
VCE = 3 V
Power gain Gma, Gms = ƒ(IC)
f = 1.8GHz
f = parameter in GHz
VCE = parameter
24
18
dB
0.9GHz
dB
20
5V
18
3V
16
G
G
A
1.8GHz
14
2V
14
2.4GHz
12
12
3GHz
10
1V
4GHz
8
10
6
4
0
0.7V
5
10
15
20
25
30
35
dB
8
0
45
5
10
15
20
IC
25
30
mA
40
IC
5
www.BDTIC.com/infineon
2013-09-03
BFR360L3
Power Gain Gma, Gms = ƒ(f)
Power Gain |S
Valid
upƒto
(f)6GHz
21|² =
VCE = parameter
VCE = parameter
50
40
dB
dB
Ic=15mA
Ic = 15mA
40
30
30
|S21|2-
G
35
5V
2V
1V
0.7V
25
5V
2V
1V
0.7V
25
20
BDTIC
20
15
15
10
10
5
5
0
0
1
2
3
4
GHz
0
0
6
1
2
3
f
4
GHz
6
f
Power Gain Gma, Gms = ƒ(VCE ):
f = parameter
24
dB
Ic = 15mA
0.9GHz
20
G
18
1.8GHz
16
14
2.4GHz
12
3GHz
10
4GHz
8
6
4
0
1
2
3
4
V
6
VCE
6
www.BDTIC.com/infineon
2013-09-03
Package TSLP-3-1
BFR360L3
BDTIC
7
www.BDTIC.com/infineon
2013-09-03
BFR360L3
Edition 2009-11-16
Published by
Infineon Technologies AG
81726 Munich, Germany
 2009 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
BDTIC
The information given in this document shall in no event be regarded as a guarantee
of conditions or characteristics. With respect to any examples or hints given herein,
any typical values stated herein and/or any information regarding the application of
the device, Infineon Technologies hereby disclaims any and all warranties and
liabilities of any kind, including without limitation, warranties of non-infringement of
intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices,
please contact the nearest Infineon Technologies Office (<www.infineon.com>).
Warnings
Due to technical requirements, components may contain dangerous substances.
For information on the types in question, please contact the nearest Infineon
Technologies Office.
Infineon Technologies components may be used in life-support devices or systems
only with the express written approval of Infineon Technologies, if a failure of such
components can reasonably be expected to cause the failure of that life-support
device or system or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body or
to support and/or maintain and sustain and/or protect human life. If they fail, it is
reasonable to assume that the health of the user or other persons may be
endangered.
8
www.BDTIC.com/infineon
2013-09-03
Related documents