Download BCV61

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
BCV61
NPN Silicon Double Transistor
• To be used as a current mirror
• Good thermal coupling and VBE matching
3
2
• High current gain
4
1
• Low collector-emitter saturation voltage
• Pb-free (RoHS compliant) package
• Qualified according AEC Q101
C1 (2)
C2 (1)
BDTIC
Tr.1
Tr.2
E1 (3)
E2 (4)
EHA00012
Type
Marking
Pin Configuration
Package
BCV61B
1Ks
1 = C2
2 = C1
3 = E1
4 = E2
SOT143
BCV61C
1Ls
1 = C2
2 = C1
3 = E1
4 = E2
SOT143
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCEO
30
VCBO
30
Emitter-base voltage
VEBS
6
DC collector current
IC
100
Peak collector current, tp < 10 ms
ICM
200
Base peak current (transistor T1)
IBM
200
Total power dissipation, TS = 99 °C
Ptot
300
mW
Junction temperature
Tj
150
°C
Storage temperature
Tstg
Value
Unit
V
(transistor T1)
Collector-base voltage (open emitter)
(transistor T1)
mA
-65 ... 150
Thermal Resistance
Junction - soldering point1)
1For calculation of R
RthJS
≤170
K/W
thJA please refer to Application Note AN077 (Thermal Resistance Calculation)
1
www.BDTIC.com/infineon
2011-10-13
BCV61
Electrical Characteristics at TA = 25°C, unless otherwise specified
Parameter
Symbol
Values
Unit
min.
typ.
max.
V(BR)CEO
30
-
-
V(BR)CBO
30
-
-
V(BR)EBO
6
-
-
ICBO
-
-
15
nA
ICBO
-
-
5
µA
hFE
100
-
-
-
IC = 2 mA, VCE = 5 V, BCV61B
200
290
450
IC = 2 mA, VCE = 5 V, BCV61C
420
520
800
DC Characteristics of T1
Collector-emitter breakdown voltage
V
IC = 10 mA, IB = 0
Collector-base breakdown voltage
IC = 10 µA, IE = 0
Emitter-base breakdown voltage
BDTIC
IE = 10 µA, IC = 0
Collector cutoff current
VCB = 30 V, IE = 0
Collector cutoff current
VCB = 30 V, IE = 0 , TA = 150 °C
DC current gain1)
IC = 0.1 mA, VCE = 5 V
DC current gain1)
hFE
Collector-emitter saturation voltage1)
mV
VCEsat
IC = 10 mA, IB = 0.5 mA
-
90
250
IC = 100 mA, IB = 5 mA
-
200
600
IC = 10 mA, IB = 0.5 mA
-
700
-
IC = 100 mA, IB = 5 mA
-
900
-
IC = 2 mA, VCE = 5 V
580
660
700
IC = 10 mA, VCE = 5 V
-
-
770
Base-emitter saturation voltage1)
VBEsat
Base-emitter voltage1)
VBE(ON)
1Puls test: t ≤ 300 µs, D = 2%
2
www.BDTIC.com/infineon
2011-10-13
BCV61
Electrical Characteristics at T A = 25°C, unless otherwise specified.
Symbol
Values
Parameter
min.
typ.
Unit
max.
Characteristics
Base-emitter forward voltage
V
VBES
IE = 10 µA
IE = 250 mA
Matching of transistor T1 and transistor T2
0.4
-
-
-
-
1.8
IC1 / I C2
at IE2 = 0.5mA and VCE1 = 5V
-
-
-
TA = 25 °C
0.7
-
1.3
TA = 150 °C
0.7
-
1.3
IE2
-
5
-
mA
fT
-
250
-
MHz
Ccb
-
0.95
-
pF
Ceb
-
9
-
F
-
2
-
dB
h11e
-
4.5
-
kΩ
h12e
-
2
-
10 -4
h21e
100
-
900
h22e
-
30
-
BDTIC
Thermal coupling of transistor T1 and
transistor T2 1)
T1: VCE = 5V
Maximum current of thermal stability of IC1
AC characteristics for transistor T1
Transition frequency
I C = 10 mA, VCE = 5 V, f = 100 MHz
Collector-base capacitance
VCB = 10 V, f = 1 MHz
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz
Noise figure
I C = 200 µA, V CE = 5 V, R S = 2 kΩ,
f = 1 kHz, ∆ f = 200 Hz
Short-circuit input impedance
I C = 1 mA, VCE = 10 V, f = 1 kHz
Open-circuit reverse voltage transf.ratio
I C = 1 mA, VCE = 10 V, f = 1 kHz
Short-circuit forward current transf.ratio
-
I C = 1 mA, VCE = 10 V, f = 1 kHz
Open-circuit output admittance
µS
I C = 1 mA, VCE = 10 V, f = 1 kHz
1) Witout emitter resistor. Device mounted on alumina 15mm x 16.5mm x 0.7mm
3
www.BDTIC.com/infineon
2011-10-13
BCV61
Test circuit for current matching
A
Ι C1
VCE1 ...
2
1
T1
Ι E2 = constant
T2
BDTIC
3
4
VCO
VCO
EHN00001
Note: Voltage drop at contacts: VCO < 2/3 VT = 16mV
Characteristic for determination of VCE1 at specified RE range with
IE2 as parameter under condition of IC1/IE2 = 1.3
A
Ι C1
VCE1 ...
2
T1
1
Ι E2 = constant
T2
3
RE
4
RE
EHN00002
Note: BCV61 with emitter resistors
4
www.BDTIC.com/infineon
2011-10-13
BCV61
Collector-base capacitance Ccb = ƒ(VCB)
Total power dissipation P tot = f(TS)
Emitter-base capacitance Ceb = ƒ(VEB)
350
12
pF
mW
9
250
8
Ptot
CCB(CEB )
10
7
200
BDTIC
6
150
5
CEB
4
100
3
2
50
1
CCB
0
0
4
8
12
16
V
0
0
22
15
30
45
60
75
VCB(VEB
90 105 120
°C 150
TS
Permissible pulse load
Ptotmax / PtotDC = f (tp)
10 3
BCV 61
EHP00942
Ptot max
5
Ptot DC
D=
tp
T
tp
T
10 2
D=
0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
5
10 1
5
10 0
10 -6
10 -5
10 -4
10 -3
10 -2
s
10 0
tp
5
www.BDTIC.com/infineon
2011-10-13
Package SOT143
BCV61
2
0.1 MAX.
10˚ MAX.
1
1 ±0.1
0.2
0.08...0.1
1.3 ±0.1
3
2.4 ±0.15
4
B
10˚ MAX.
2.9 ±0.1
1.9
0.15 MIN.
Package Outline
A
5
0.8 +0.1
-0.05
0.4 +0.1
-0.05
0...8˚
0.2 M A
0.25 M B
1.7
BDTIC
Foot Print
1.2
0.8
0.9
1.1
0.9
0.8 1.2 0.8
0.8
Marking Layout (Example)
RF s
56
Manufacturer
Pin 1
2005, June
Date code (YM)
BFP181
Type code
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
0.2
2.6
8
4
Pin 1
3.15
1.15
6
www.BDTIC.com/infineon
2011-10-13
BCV61
Edition 2009-11-16
Published by
Infineon Technologies AG
81726 Munich, Germany
 2009 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
BDTIC
The information given in this document shall in no event be regarded as a guarantee
of conditions or characteristics. With respect to any examples or hints given herein,
any typical values stated herein and/or any information regarding the application of
the device, Infineon Technologies hereby disclaims any and all warranties and
liabilities of any kind, including without limitation, warranties of non-infringement of
intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices,
please contact the nearest Infineon Technologies Office (<www.infineon.com>).
Warnings
Due to technical requirements, components may contain dangerous substances.
For information on the types in question, please contact the nearest Infineon
Technologies Office.
Infineon Technologies components may be used in life-support devices or systems
only with the express written approval of Infineon Technologies, if a failure of such
components can reasonably be expected to cause the failure of that life-support
device or system or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body or
to support and/or maintain and sustain and/or protect human life. If they fail, it is
reasonable to assume that the health of the user or other persons may be
endangered.
7
www.BDTIC.com/infineon
2011-10-13
Related documents