Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Driving high power LED from DC LEDs current regulation Voltage regulation is not practicable because of the exponential, temperature dependent, voltage-current LED characteristic. With voltage regulation 4% voltage change 3.21V to 3.34V 50% current change 400mA to 600mA With voltage regulation 20C temp. change 100mA current change Constant current or constant voltage? • Constant Voltage – Inexpensive – Simple control – Poor control of lumens output • Constant Current – Best way to control and maintain lumens output Driving LEDs – series, parallel or both? Easiest to implement and Control Limited by converter topology or possibly Safety voltage limitations Current matching Low Cost Poor Regulation Lossy w/o Op Amp Best Parallel Control Most Expensive Need matching MOSFETs Linear (lossy) To be avoided: • Possible strings brighter than others due to ΣVf variations • At low brightness level, some LEDs will end up output no light before others randomly in strings. LED post regulation • DC - DC LEDs driver • Linear LEDs Driver • DC-DC design example Selecting DC- DC driver LEDs Requested lighting performances Determine LEDs: • Requested lumens • Electrical characteristics • Vf and If • Color • # of LEDs Note: Vo = (#of LEDs x VF) + VSNS Determinare le features: • Vin range • Dimming (PWM or analog) • Thermal feedback • Constant frequency • Constant ripple • … etc BOOST: Vo > Vin Determinare driver Topology: • # di path( IF, current matching, high Vin) BUCK: Vo < Vin BUCK-BOOST: Vo<Vin and Vo>Vin Controller or Regulator: • Output current • Efficiency • Cost • Solution Size Topologie DC-DC per LED driver • Boost: (step-up) – Regulator – Controller • Buck: (step-down) – Regulator – Controller – Floating • Buck-boost Boost Controller: quando Vin < Vout L Io Nella configurazione Boost la minima tensione della serie di LEDs (Vout =Sum Vf led) deve essere più grande della tensione di ingresso. Δ IL CO C + + + VF Δ IC - Il Dimming dei led in questo tipo di configurazione può risultare complesso. VIN R FB Utilizzo consigliato: - lunghe serie di LEDs, Backlighting, camera Flash Pro: - Numero di LEDs in Out “indipendente” dalla Vin - Soluzione “elastica” per corrente di Uscita Contro: - Efficienza < 85% - Nessun controllo sul corto LEDs + V FB - Vo Boost Converter: quando Vin < Vout L Nella configurazione Boost la minima tensione della serie di LEDs (Vout =Sum Vf led) deve essere più grande della tensione di ingresso. Io Δ IL Ctrl C + CO + + VF Δ IC - Il Dimming dei led in questo tipo di configurazione può risultare complesso. VIN R FB + V FB - Utilizzo consigliato: - Lunghe serie di LEDs, Backlighting, camera Flash Pro: - Numero di LEDs in Out “indipendente” dalla Vin Contro: - Efficienza < 85% - Nessun controllo sul corto LEDs - Potenza limitata Vo Buck Controller: Vin > Vout Non-Synchronous Synchronous Utilizzo consigliato: - Serie limitate di LEDs, pilotaggio singolo LED. Pro: - Controllo della Iout più accurato - “Protezione al corto” sui LED - Efficienza Elevata > 85% - Soluzione “elastica” per corrente di Uscita Contro: - # LED pilotabile limitato dalla Vin Buck Converter: Vin > Vout Non-Synchronous Synchronous (Internal-FET) Regulators Utilizzo consigliato: - Serie limitate di LEDs, pilotaggio singolo LED. Pro: - Controllo della Iout più accurato - “Protezione al corto” sui LED - Efficienza Elevata > 85% Contro: - # LED pilotabile limitato dalla Vin - Potenza Limitata DC/DC Solutions for Every Need Plug In Power Modules - PTH series PTH • Complete DC/DC solution • Second sourced footprint and functionality – POLA alliance • Fastest time to market Integration SWIFT™ And TPS60K™ Ease of Use POL Modules Integrated FET Regulators (SWIFT and TPS60K) External FET System Cost TPS40KTM Flexibility Integrated FET • Integrated power MOSFETs simplify design and consume less board space • Fewer components reduce bill of material • Easy-to-use software tool saves development time External FET Regulators (TPS40K) • Application and design flexibility available to the user • Excellent total systems cost/value • Easy-to-use software tool saves development time Modified Buck: Vin (anche 220V) > Vout Io L VIN + - D Rsense CO + + Vo Δ IL + Vsense - Utilizzo consigliato: - Lunghe Serie limitate di LEDs Pro: - Soluzione Economica quando Vin alta e Isolamento elettrico non necessario - Dimmerabile CONTRO: - Controllo di corrente non accurato - Efficienza fortemente influenzata dal # LEDs in Out Buck- Boost: Vout ≤ Vin ≤ Vout Ctrl VIN + - Io C L + VF CO + R FB + V FB - Vo Utilizzo consigliato: - Serie di LEDs ove la Sum di Vf è comparabile alla Vin Pro: - Flessibilità di configurazione - Protezione al corto sui Leds - Dimmerabile Contro: - Efficienza fortemente influenzata dal # LEDs in Out - Costo Different dimming 3) PWM to ext. Switch max 50kHz 1) PWM to Enable Max 100 Hz 2) PWM to FB max 5kHz TPS40200 Wide Input driver Features Benefits • 4.5V to 52V operation • Voltage Mode Control with Feed Forward Compensation • 700mV Voltage Reference - 1% accuracy • Internal Under-Voltage Lockout • Programmable Frequency (35kHz-500 kHz) • Programmable Overcurrent Protection • Frequency Synchronization • Closed Loop Soft Start • Integrated Driver • Package - 8 pin SOIC • Wide input range for use in many applications • Voltage feed forward – great line regulation, fast transient response • Programmable features allows flexible design; frequency, overcurrent protection, under voltage lockout • Softstart provides smooth, well controlled power up • Simple configuration- minimal external components 1 RC 2 SS/SD 3 COMP 4 FB TPS40200 VIN VIN 8 ISNS 7 Rsense GDRV 6 VOUT GND 5 Buck Converter example • LED current 500mA • Vf LED 5V • Wide Input Range (4.5V to 52V) • Low Cost Design • Few Components • Highly Flexible • 90% Max Duty Cycle • Simple Low Cost Solution Emergency Flash HB LED driver Buck-boost with the TPS40200 Vin= 4.5V to 52V Boost Topology for longer LEDs Strings LED Current = 500mA LED Vf = 5V PWM Dimming Capabilities Wide Vin Buck Boost LED driver TPS40211 Boost LED driver • • • • • • • • • • • • 4.5V ≤ VIN ≤ 52V Current Mode Control (with Slope Compensation) Programmable Frequency (35k to 1MHz) Frequency Synchronization (requires external components) Closed Loop Soft Start 260mV Voltage Reference Internal Under-Voltage Lockout – 300mV Hysteresis Integrated Low Side Driver Programmable Overcurrent Protection • Low Side Sensing • Leading Edge Blanking 8V LDO for external circuit biasing (<5mA) Low Current Shutdown (10uA typical) 10L MSOP PPad, 10L 3x3 SON Boost & SEPIC LED drivers Monolithic step-up portfolio TPS61175 high-voltage, serial Boost DC/DC Single LED, high-current Boost DC/DC 38V 3A Switch Multiple LED, parallel Charge Pump Multiple LED, parallel Linear TPS61165 TPS61081 27V 1.2A Switch 3x3 QFN TPS61140 27V 0.7A Switch Dual Output (OLED+6 LED) 0.5A Switch 2.0A Switch I2C CSP TPS61045 38V 0.7A Switch TPS61150A 26V 0.7A Switch Dual Output (2x6 LED max) TPS61058 1.1A Switch TPS61045 OLED 26V 0.7A Switch 27V 0.7A Switch Dual Output (OLED+6 LED) TPS61061 0.4A Switch CSP 27V 0.5A Switch 28V 0.45A Switch TPS61161 TPS61140 1.5A Switch TPS61080 TPS61160 0.45A Switch TPS61059 TPS61170 37V 0.5A Switch 2x2 SON 38V 1.2A Switch TPS61043 TPS61050 1 LED Flashlight/ high-power TPS61060 TPS75105 TPS61062 TPS61042 TPS60251 0.4A Switch CSP Dual/Quad Output CSP 0.4A Switch CSP 0.5A Switch Dual Output I2C TPS60231 TPS61041 TPS60230 TPS61040 TPS60250 0.4A Switch no OVP Triple Output I2C 0.25A Switch no OVP 3 4 5 6 # of LEDs Backlight 7 10 12 TPS61165 Monolithic boost LED driver Features Benefits • 3-V to 18-V input voltage range • Mid range input supply • 38-V open LED protection • Ultra-small package for high brightness LED • 200mV reference voltage with +/-2% accuracy • No audible noise during brightness control • 1.2-MHz switching frequency • 1.2-A switch current limit • One wire dimming interface EasyScaleTM • PWM brightness control (10kHz to 100kHz) • Build-in soft start-up • 2mm x 2mm x 0.8 Thin-QFN package Vin 5 12 Vout 12 24 Idrive 350mA 350mA LED post regulation • DC- DC LEDs driver • Linear LEDs Driver • DC-DC design example Lineari TOPOLOGIE • Direttamente connessi alla linea di Alimentazione • Controllo lineare di corrente che sostenga il drop di tensione • Connessi in cascata a DC/DC per connessione a lunghe stringhe di LEDs Batteria o Linea di alimentazione Batteria o Linea di alimentazione Linear reg. Linear reg. DC/DC Boost Linear reg. Linear reg. nx 50mA to 350mA strings with individual linear curent control and PWM input up to 14 nx 50mA to 350mA Boost + long strings with individual linear curent control and PWM possibility TL4242 500mA LED Driver Features Benefits • Single Output 500mA LED Drive • PWM Input • Optimized for backlight applications • Short-Circuit Proof • PWM input for brightness control • Over-Temperature Protection • Drive high power LEDs • Reverse-Polarity Proof • Simple programmability with single Resistor • Open-Load Detection • Wide Temperature Range (-40C to +150° C) • Status output for error reporting • Drive LEDs with up to 42V • Wide Operating Voltage Applications • Lighting • Display backlighting • Gaming http://focus.ti.com/docs/prod/folders/print/tl4242.html http://www.ti.com/lighting LED post regulation • DC- DC LEDs driver • Linear LEDs Driver • DC-DC design example Design Target Design Example: • • • • Input Voltage: 16-36V Minimum output voltage: 3.3V Output Current: 1A Switching Frequencies – 300kHz – 700kHz – 1.5MHz • Space optimized designed Selected Converter : TPS54160 • • Supports up to 2.5MHz Marketed as small sized design for high-density HV Industrial applications TPS54160 – 3.5V-60V - 1.5A converter Features • 3.5V to 60V Input Voltage Range • 200 mOhm High Side MOSFET • High Efficiency at Light Loads with a Pulse VIN TPS54160 EN Skipping Eco-Mode™ • 116 uA Operating Quiescent Current • 1.3 uA Shutdown Current • 300 kHz to 2.5 MHz Switching Frequency (RT) • 300 kHz to 2.2 MHz Switching Frequency (CLK) • Synchronizes to External Clock • Adjustable Slow Start/Sequencing • UV and OV Power Good Output • Adjustable UVLO Voltage and Hysteresis • 0.8V Internal Voltage Reference • - 40° to +150°C Operating Tj • MSOP10 Package with Power Pad PWRGD BOOT PH SS/TR RT/CLK COMP VSENSE GND TPS54160 – functional block diagram PWRGD 6 EN 3 VIN 2 Shutdown UV Thermal Shutdown Enable Comparator Logic UVLO Shutdown Shutdown Logic OV Enable Threshold Boot Charge Voltage Reference Minimum Clamp Pulse Skip ERROR AMPLIFIER Boot UVLO PWM Comparator VSENSE 7 SS/TR 4 Current Sense BOOT 1 Logic And PWM Latch Shutdown Slope Compensation PH 10 COMP 8 Frequency Shift Overload Recovery Maximum Clamp Oscillator with PLL RT/CLK 5 POWERPAD 11 TPS54160 Block Diagram GND 9 TPS54160 – adjusting soft start EN SS/TR VSENSE VOUT Css (nF ) Tss (ms ) Iss (uA) Vref (V ) 0.8 Css=0.1uF TPS54160 – current limit • TPS54160 implements Cycle by Cycle Current Limit with Frequency Shift • More Robust than Hiccup or Latch Off Current Limit Methods • Switching Frequency changes as a function of VSENSE pin voltage • Limits Usable Maximum Switching Frequency at High Input Voltage Switching Frequency vs VSENSE Switching Frequency (%) 100 75 50 VIN=12V TJ=25C 25 0 0 0.2 0.4 VSENSE (V) 0.6 0.8 TPS54160 – adjusting switching freq. 206033 RT ( kOhm) fsw( kHz )1.0888 Sw itching Frequency vs RT/CLK Resistance High Frequency Range Sw itching Frequency vs RT/CLK Resistance Low Frequency Range 1000 VIN=12V TJ =25°C 2000 Switching Frequency (kHz) Switching Frequency (kHz) 2500 1500 1000 500 0 0 25 50 75 100 125 RT (kOhm ) 150 175 200 VIN=12V TJ =25°C 800 600 400 200 0 100 200 300 400 500 600 RT (kOhm ) 700 800 900 1000 TPS54160 – switching freq. selection • Using RT mode, fsw adjustable from 300 kHz to 2500 kHz • Using CLK mode, fsw adjustable from 300 kHz to 2200 kHz • Solution Size, Performance and Efficiency Tradeoffs • Maximum Input Voltage, Output Voltage and the minimum controllable on time limit fsw • Operating Area for proper Frequency Shift protection limits fsw RT ( kOhm) 206033 fsw(kHz )1.0888 TPS54160 – minimum on time • DC/DC Converters won’t always work over a wide Vout/Vin Range. Check the minimum controllable on time in the datasheet, not the maximum oscillator frequency. • From TPS54160 datasheet: Minimum Controllable On Time' of 130ns. • Check if the Vout/Vin (duty cycle) combination will work when the switching frequency and the minimum controllable on time are known. Min. Duty Cycle = Min. On time * Switching Frequency 36Vin, 3.3Vout nom 130ns min. on-time examples: Frequency 300 kHz 700 kHz 1.5 MHz Min. Duty Cycle 10.6% 10.6% 10.6% On Time min 289nSec 122nSec 56nSec Minimum Vout OK OK pulse skipping TPS54160 – minimum on time issue Pulse skipping happens when the DC/DC converter cannot extinguish the gate drive pulses fast enough to maintain the desired duty cycle. The power supply will still regulate the output voltage, but… • • • • Ripple voltage increases due to the pulses being further apart Frequency is no longer fixed Current limit may no longer work since the IC cannot respond in time Control loop may be unstable. Transient response is also affected V Min on-time within spec t t Min on-time out of spec Controller misses a pulse to maintain desired regulation. Drop the Vin. Filter Size Consideration Consider Capacitor Package • Capacitors are available in fixed sizes • ESR must be maintained as the case size is reduced Consider Inductor Volume • Taller inductors may take up less board area, but pose a height issue • Inductor Volume = L * i2 / 5x10-3 Area Passives IC Frequency TPS54160 - inductor selection • Inductor ripple current > 100 mA for dependable operation. • For adequate slope compensation in CCM at duty cycles > 50%, keep Kind ≤ 0.4 Lo min Vin max Vout Vout Io Kind Vin max fsw Iripple Io Kind 0.2 Kind 0.4 300kHz L ≥ 39 µH 700kHz L ≥ 18 µH 1.5MHz L ≥ 8.2 µH Inductor Size Comparison Wurth 744773082 1500kHz 8.2uH 116 mΩ Wurth 744777118 700kHz 18uH 80 mΩ Wurth 744775139 300kHz 39uH 145mΩ TPS54160 – output capacitor selection 2 Iout Co fsw Vout Ioh Co Lo Vf Co 2 Iol 2 2 Vi 2 Load Transient 1 1 8 fsw Voripple Iripple Voripple R _ esr Iripple Unload Transient Voltage Ripple Voltage Ripple TPS54160 – capacitor size comparison 300 kHz Design 8X100uF 3X100uF 2.5mm 3.2mm 1500 kHz Design 700 kHz Design 2X100uF 2.5mm 3.2mm 2.5mm 3.2mm Frequency Capacitor Land-pad size Inductor Size Filter Area (w/o spacing) Total Converter area 300kHz 700kHz 1500kHz 80mm2 30mm2 20mm2 54mm2 30mm2 18mm2 134mm2 60mm2 38mm2 341mm2 204mm2 176mm2 Efficiency Power dissipation comes from several places including: • FET driving loss (Qg * V * F): – FET drive loss is proportional to the switching frequency • FET switching loss function of Vin, Iout, Ton/off, f – Switching loss is proportional to the switching frequency • FET resistance ( I2 * Rds(on)) – Same FET – little variance in these examples • Inductor loss (I2 * DCR + Core losses): – DCR losses may be reduced when Inductance is smaller – AC losses are proportional to the frequency • Capacitor loss (IRMS2 * ESR): – Capacitor loss is negligible • IC loss (Iq): – Same IC – no variance in these design examples Power dissipation contributors Pcon Io 2 Rdson Vo Vin Conduction Loss Psw Vin 2 fsw Io 0.25 10 9 Switching Loss Pgd Vin 3 10 9 fsw Gate Drive Loss Pq 116 10 6 Vin Supply Loss Total device power dissipation is: Ptot Pcon Psw Pgd Pq TJ TA Rth Ptot TA max TJ max Rth Ptot Efficiency Results 300kHz 75% 700kHz 65% 1500kHz 52% Dissipated power turns into heat: Frequency 300kHz 700kHz 1500kHz IC temperature 53° C 89° C 161°C IC Dissipation 531mW 1200mW 2400mW TPS54160 – peak current mode TPS54160 – simplified model VO VC Adc RESR gmps RL fp CO fz s 1 2 fz vo Adc vc s 1 2 fp Adc gm ps RL fp fz 1 C O R L 2 1 CO RESR 2 TPS54160 – compensation Can compensate for any type of output capacitor by using Type 2A, 2B, or 1 Frequency Compensation See Datasheet for equations. TPS54160 – compensation design Gmod fc 6.6 Rload 2 Fc Cout Resr 1 2 Fc Cout Rload Resr 1 For ceramic R3 For tantalum and aluminum Vo G mod fc 80 10 6 C1 1 R3 fp mod Co Re sr C2 R3 R3 Vo fc G mod fc fz mod 80 10 6 C1 1 R3 fp mod C2 1 2 R3 fz mod Basic Stability Criterion Reading Bode Plot 1) Find Cross Over Frequency at 0dB • 21 kHz Cross Over 2) Find Phase Margin at the Cross Over Frequency • 45° at 21kHz 3) Goal is to have Phase Margin in between 45° and 90° to maintained a welldamped transient response Measured Stability Measured Stability Design tools Summary Performance • Higher switching frequency allows for a higher cross over frequency and a faster transient response. Is this necessary? • High frequency devices are more expensive. Make sure you really need the benefits and can handle the trade offs (heat and efficiency). Noise - EMI • Sometimes an application specific frequency band must be avoided (AM band, ADSL, IF,) • Alternative - Synchronize the frequency in an area of the band that is not so sensitive Minimum on time: • Vout is limited by the controllable on time and frequency • Take the input voltage and switching frequency tolerances into consideration • Check to see if the current limit circuit will respond fast enough Efficiency • Efficiency decreases as switching frequency increases mainly due to FET switching losses • More copper, board area or additional heat-sinking may be needed Size • 350kHz power supply is 260mm2 which saves about 35% of the board area when moving to 1600kHz. (100mm2 savings). • More heat in a smaller area