Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
01_Math_intro/e_01_1_011.html
Distance in polar coordinates
Find the distance between two points
and
(polar coordinates).
01_Math_intro/e_01_1_012.html
Distance in spherical coordinates
Find the distance between
and
(spherical coordinates).
01_Math_intro/e_01_1_013.html
Elliptical coordinates
We define elliptical coordinates as follows:
as functions of
.
and
as in polar coordinates. Find
01_Math_intro/e_01_1_014.html
Distance in elliptical coordinates
In elliptical coordinates (
points
and
and
as in polar coordinates) find distance between two
.
01_Math_intro/e_01_1_015.html
Coordinates and vectors
Two different coordinate systems are established on a straight line,
and , which are related as follows:
, where and are constants. The distance element in terms of
is given by
.
Find the expression for the distance element in terms of .
01_Math_intro/e_01_1_016.html
Distance element
Two different coordinate systems are established on a plane,
where
and
. Find the distance element in terms of coordinates
, which are related as follows:
, if
are Cartesian.
01_Math_intro/e_01_1_017.html
Distance element
Same as above but the relation reads
.
01_Math_intro/e_01_1_018.html
Distance element
New coordinates
are introduced which are related to the ordinary polar coordinates
,
. Find the distance element.
as follows:
01_Math_intro/e_01_1_019.html
Coordinates and vectors
Starting with cartesian coordinates we define new ones as follows:
,
, where
are some constant parameters. What conditions on these parameters should be satisfied in order that the
new coordinates also be cartesian and the measure of the distance remain the same ?
01_Math_intro/e_01_1_020.html
Volume of tetrahedron
Four vertices of the tetrahedron are given by four radius-vectors
,
. Find the volume.
01_Math_intro/e_01_1_021.html
Coordinates and vectors
Let
be the vector from the center of the Earth to New-York and
is the vector from the center of the Earth
to Jerusalem. Find the angle between the two vectors (find the lacking data in a geographical atlas).
01_Math_intro/e_01_1_022.html
Elliptical coordinates
Find the distance element
in the elliptical coordinates
,
unit vectors tangential and normal to
curves and derive their relation to
. Define
and
.
01_Math_intro/e_01_1_023.html
Legitimate coordinates?
Are the coordinates
,
legitimate ? If yes, find the distance element.
01_Math_intro/e_01_1_024.html
Length of parabola
Calculate the length of the parabola
,
, from
to
.
01_Math_intro/e_01_1_025.html
Circumference
Ellipse is given by the equation
. Calculate the circumference.
01_Math_intro/e_01_1_026.html
Equation of plane
A plane passes through the point
and its normal is
. Write down the equation of the plane.
01_Math_intro/e_01_1_027.html
Spherical coordinates
Find the relation between the unit vectors of 3D Cartesian coordinates and unit vectors of spherical coordinates.
01_Math_intro/e_01_1_028.html
Cylindrical and spherical coordinates
Decompose unit vectors of cylindrical coordinates using unit vectors of spherical coordinates.
01_Math_intro/e_01_1_029.html
Coordinates and vectors
Let
(cylindrical coordinates). Derive
,
, and
.
01_Math_intro/e_01_1_030.html
The shortest distance between cities
Two cities on Earth surface (assume it is a sphere with the radius ) have the coordinates
and
, where
is the latitude, and
is the longitude. Find the shortest distance between the cities. Hint:
Arc of the circle passing through the center of the Earth.
01_Math_intro/e_01_1_031.html
Coordinates and vectors
Four vertices of the tetrahedron are given by four radius-vectors
,
. Find the volume.
01_Math_intro/e_01_1_032.html
Distance element
in the elliptical coordinates
Find the distance element
in the elliptical coordinates
,
unit vectors tangential and normal to
curves and derive their relation to
. Define
and
.
01_Math_intro/e_01_1_033.html
Cross product
Simplify
.
01_Math_intro/e_01_1_034.html
Coordinates and vectors
Given two non-parallel unit vectors
and , find another unit vector
plane and
divides the angle between the first two in the way
01_Math_intro/e_01_1_035.html
Projection
What is the projection of the vector
01_Math_intro/e_01_1_036.html
Projection
onto the unit vector
?
such that all three are in the same
.
What is the projection of the vector
onto the vector
?
01_Math_intro/e_01_1_037.html
Coordinates and vectors
Given two vectors
and
.
and , represent vector
as a sum of two vectors,
and
,
, such that
01_Math_intro/e_01_1_038.html
Coordinates and vectors
On the Earth a man is at the point
east longitude and
latitude moves in the north-east direction.
Express the unit vector along the velocity in spherical and cartesian coordinates.
01_Math_intro/e_01_1_039.html
Coordinates and vectors
Show that a straight line is given by the relation
.
, where
and
are constant vectors and
01_Math_intro/e_01_1_040.html
Intersection line of two planes
Find the intersection line of the two planes
and
.
01_Math_intro/e_01_1_041.html
Equation for a circle
Write in the vector form the equation for a circle with the radius
center at .
, normal direction
(unit vector !), and
01_Math_intro/e_01_1_042.html
Cylindrical surface
Write in the vector form the equation for a cylindrical surface with the radius
crossing the point .
and the axis parallel to
and
01_Math_intro/e_01_1_043.html
Coordinates and vectors
Prove that four different points
sphere.
,
, are always on a sphere and find the center and the radius of the
01_Math_intro/e_01_1_044.html
Calculate a)
, b)
01_Math_intro/e_01_1_045.html
, c)
, d)
.
Prove a)
, b)
, c)
.
01_Math_intro/e_01_1_046.html
Express
with the use of
and
.
01_Math_intro/e_01_1_047.html
Angular momentum
Angular momentum is defined as
particle.
. Express in terms of angular velocity for a circularly moving
01_Math_intro/e_01_1_048.html
Coordinates and vectors
Given two nonparallel vectors
and
build three mutually perpendicular unit vectors.
01_Math_intro/e_01_1_049.html
תרגיל
חשב את.
ו
נתונים הוקטורים
.א
.ב
.ג
01_Math_intro/e_01_1_050.html
תרגיל
חראה.
,
,
,
נתןנים הוקטורים
:כי
.א
.ב
.ג
01_Math_intro/e_01_1_051.html
תרגיל
?
01_Math_intro/e_01_1_052.html
מהי.
היאr2 וr1 הזוית בין.
ו
נתונים הוקטורים
תרגיל
.
המקיימים
ו
נתונים הוקטורים
הראה כי
. א
.ב
01_Math_intro/e_01_1_053.html
Vector algebra
Given two vectors,
and
, with norms, v and w respectively. The angle between them is
a) Find the norm of the vector - , i.e.
b) Find the angle
between the vectors
c) Calculate (a) and (b) for:
v=12 w=9
and
d) Draw the vectors
,
and
.
and
for
.
.
01_Math_intro/e_01_1_054.html
Relations between two coordinate systems
Given two coordinate systems
and
Show that the norm of the vector
stays unchanged when moving to the
and the relations between them
, where =(Ax ,Ay) =(Bx , By) in the
coordinate system.
01_Math_intro/e_01_1_055.html
Linear dependence of vectors
Given two vectors
and
Find
such that
.
Find
such that
.
01_Math_intro/e_01_1_056.html
Partial derivatives and differentials
For the function:
Compute:
,
and the full differential 01_Math_intro/e_01_1_057.html
,
.
:
coordinate system
Vector algebra
Given two vectors,
and
1.Find
.
2. Find the angle
with norms,
between
,
and the angle
between them,
and .
01_Math_intro/e_01_1_058.html
Coordinates
The angle between two sets of Cartesian coordinates,
1. Find the relations between the unit vectors of
2. For an arbitrary vector
with components
in the
set.
01_Math_intro/e_01_1_059.html
Coordinates
A vector
has three angles with the axes,
Prove that :
.
01_Math_intro/e_01_1_060.html
Derivatives
Given the function
compute:
,
,
,
and show that
01_Math_intro/e_01_1_061.html
Differential equations
Solve the system of differential equations
where
.
01_Math_intro/e_01_1_062.html
Differential equations
.
and
, is .
in terms of the unit vectors of
.
in the
set, find its components,
,
Solve the system of differential equations
where
.
01_Math_intro/e_01_1_063.html
Differential equations
Solve the system of differential equations
where
.
01_Math_intro/e_01_1_064.html
Differential equations
Solve the system of differential equations
where
.
01_Math_intro/e_01_1_065.html
Differential equations
Solve the system of differential equations
where
.
01_Math_intro/e_01_1_066.html
Fourier series
For the sawtooth wave f(t)
1. Expand f(t) into the Fourier series both with real and complex coefficients (i.e. in the "sin/cos" and "exp"
forms)
2. Make sure that both series are equal.
3. Plot the function f(t) and its approximation using the first N members of the infinite Fouries series you
found. Check (qualitatively) how good the approximation is for different N's. (use any mathematical
program for this purpose, e.g. Matlab).
01_Math_intro/e_01_1_067.html
The power of curvilinear coordinates
a disk of radius R has a density of
.
1) in Cartesian coordinates, try to find the disk's mass,
2) now do it in polar coordinates.
.
01_Math_intro/e_01_2_001.html
טורי טיילור
:
סביבIII י את הפונקציות הבאות לטור טיילור עד לסדר/פתח
.1
.2
.3
01_Math_intro/e_01_2_002.html
יעקוביאנים
:י את היעקוביאן במעבר מקואורדינטות קרטזיות לקואורדינטות הבאות/מצא
. פולריות.1
. כדוריות.2
01_Math_intro/e_01_2_003.html
אינטגרלים
:י את האינטגרלים הבאים/פתור
.1
.2
01_Math_intro/e_01_2_004.html
משוואה דיפרנציאלית
פתור/י את המשוואה הדפרנציאלית הבאה:
כאשר R,L,Cהם קבועים.
01_Math_intro/e_01_2_005.html
זהויות וקטוריות
הוכח/י את הזהויות הבאות:
.1
.2
.3
01_Math_intro/e_01_2_006.html
משפט סינוסים וקוסינוסים
הוכח/י באמצעות חשבון וקטורי:
.1משפט הקוסינוסים )המישורי(.
.2משפט הסינוסים )המישורי(.
01_Math_intro/e_01_2_007.html
משפט סינוסים וקוסינוסים
במכפלה הוקטורית :
מה הוא ) Bמספרית( כאשר
נתון כי:
?
01_Math_intro/e_01_2_008.html
משפט הקוסינוסים
הוכיחו את משפט הקוסינוסים ע"י חשבון ווקטורי:
01_Math_intro/e_01_2_009.html
Vectors
A vector that points from the origin to a moving object is given by:
r=(4t,sin(wt),Exp(-at))
find the velocity and acceleration of the object.
01_Math_intro/e_01_2_010.html
Vectors
Given the vectors: A=(1,2,3) and B=(4,3,1).
a. calculate the length of both vectors.
b. find a unit vector C, that points the same direction as A.
c. calculate the length of C to verify that it is unity.
d. find the angle between the two vectors A and B.
e. find the vector D that points from B to A.
f. find the vector E that points from A to B.
01_Math_intro/e_01_2_103.html
אינטגרלים
נגדיר
להוכיח
כאשר
01_Math_intro/e_01_3_121.html
משוואות דיפרנציאליות
.
באמצעות היחידות של
.הוא פתרון
.
ואת היחידות של
נתונה המשוואה
י את היחידות של/ בטא.א
י כי/ הראה.ב
ג .בטא/י את
ואת
באמצעות
ו-
,
.
01_Math_intro/e_01_3_122.html
משוואות דיפרנציאליות
כאשר ו -קבועים וחיוביים.
נתונה המשוואה
א .בטא/י את היחידות של באמצעות היחידות של .
ב .הראה/י כי פתרון כללי ניתן לרשום בצורה
ג .בטא/י את
ד .נתון כי
באמצעות
ה .מהו הפתרון כאשר
ו-
ו-
.
.
.מצא/י את
ואת
.
שלילי? הסבר/י!
01_Math_intro/e_01_3_123.html
משוואות דיפרנציאליות
כאשר ו -קבועים וחיוביים.
נתונה המשוואה
א .בטא/י את היחידות של באמצעות היחידות של .
ב .הראה/י כי פתרון כללי ניתן לרשום בצורה
ו. -
ג .בטא/י את באמצעות
.מצא/י את ואת
ו-
ד .נתון כי
.
.
01_Math_intro/e_01_5_011.html
וקטורים
שגודלם זהה ושווה ל 12.7 -יחידות .כיוונם מתואר בציור )מכלשאר הבחינות הציור הוא סכמטי( .נסמן את
נתונים שני ווקטורים
סכומם הווקטורי ב . -מהם :
א.רכיב xורכיב yשל ?
ב.הגודל של .
ג.הזווית שיוצר עם ציר ? x
01_Math_intro/e_01_5_012.html
וקטורים
נתונים שני ווקטורים
א.מצא/י ווקטור
ב.מצא/י ווקטור
המקיים :
המקיים :
וְ
.
.
01_Math_intro/e_01_5_013.html
וקטורים
נתונים הווקטורים הבאים:
א.חשב/י את המכפלה הסקלרית
ב.חשב/י את המכפלה הווקטורית :
ג.חשב/י את הגודל של הווקטור
,מהי הזווית בין שני הווקטורים ?
.
.
01_Math_intro/e_01_5_014.html
וקטורים
נתונים שלושה ווקטורים :
א.חשבו את האורך של כל ווקטור.
ב.מהי הזוויתבין הווקטור
,
לבין כל אחד מהווקטורים
,
?
ג.האם הווקטורים יוצרים משולש ?
01_Math_intro/e_01_5_015.html
מהירות
מכונית נוסעת במהירות 50קמ"ש .היא יוצאת מנקודה נוסעת 30דקות מערבה ולאחר מכן נוסעת 70דקות בכיוון דרום-מערב.
א .מה יהיה המרחק והכיוון של המכונית מנקודת המוצא ?
ב .מה יהיההמרחק והכיוון של המכונית מנקודת המוצא במידה ומהירותה הייתה 75קמ"ש ?
01_Math_intro/e_01_5_016.html
ספינה מפליגה 50ק"מ בזווית 70לציר הולאחר מכן 130ק"מ בזווית 40לציר
מצאו את הכיוון והמרחק של הספינה מנקודת המוצא
01_Math_intro/e_01_5_017.html
נתון וקטור בהצגה קרטזית
הצג/י את הוקטור בהצגה פולרית
נתון וקטור שאורכו 10מטרים ונמצא במישור בזווית 53לציר2.
מצא/י את ההצגה הקרטזית של הוקטור במרחב
-חשב\י בעזרת מכפלה סקלרית את הזווית בין הוקטורים3.
מצא\י את הנגזרת של הוקטור4.
01_Math_intro/e_01_5_018.html
גוף שממוקם במערכת הצירים מתחיל לנוע לנקודה
משם ממשיך לנוע צפונה במהירות 30קמ"ש למשך 10דקות כשהוא מגיע לשם מיד חוזר לראשית
מצאו את וקטורי ההעתק החלקיים ותארו אותם באופן קרטזי ופולרי
מצאו את הוקטור השקול )ההעתק הכולל
01_Math_intro/e_01_5_022.html
חקירת פונקציה
הפונקציה ) h(tמתארת את הגובה של כדור קטן כפונקציה של הזמן .tהכדור נזרק כלפי מעלה ברגע t0=0מגובה מסוים.
א .מאיזה גובה נזרק הכדור? )רמז :זהו הערך של הפונקציה ) h(tברגע הזריקה( .
ב .מה הגובה המקסימלי שאליו יגיע ובאיזה רגע יגיע לגובה זה? )רמז :זהו ערך המקסימום של הפונקציה )( . h(t
ג .הכדור יגיע לקרקע ברגע מסוים .מצאו את הזמן שבו זה יקרה) .רמז :הגובה נמדד לפי המרחק מהרצפה ,כלומר ,הגובה של הרצפה
הוא (. 0
h(t) = h0+v0 t-g t2 /2
h0,g,v0>0
01_Math_intro/e_01_5_023.html
וקטורים
נתונים 2וקטורים:
.
א .עבור אילו ערכי aהוקטורים ניצבים זה לזה,
ב .עבור אילו ערכי aהוקטורים מקבילים זה לזה,
.
01_Math_intro/e_01_5_024.html
וקטורים
נתונים שני ווקטורים:
,
א.מצא/י ווקטור
ב.מצא/י ווקטור
המקיים :
המקיים :
.
.
01_Math_intro/e_01_8_011.html
וקטורים
מכונית נוסעת לכיוון דרום מזרחבמהירות 72קמ"ש.
א.מהם היטלי המהירות לכיוון מזרח ולכיוון דרום?
ב.במהלך הנסיעה מחוג המהירות מתקלקל )כנראה בגלל ריבוי הבורות בכבישי ב"ש( ומראהאת המהירות ב) m/sec -מטרים לשנייה(.
איזו מהירות יראה המחוג כעת בהנחהשמהירות הנסיעה לא השתנתה?
ג.ידוע כי בכבישי הנגבה מהירות המותרת היא 90קמ"ש .מחוג המהירות במכונית עומד על ,[m/sec] 30האם אנחנו עברייני תנועה?
ואם כן ,מה גובה הדו"ח שנקבל?
01_Math_intro/e_01_8_012.html
פונקציות
הפונקציה המתארת את אחוז האלכוהול בדם )של חוגגבמסיבת בר מצווה( כתלות בזמן ,בטווח 5-0שעות היא
)ראה/י ציור(:
א.כעבורכמה זמן מתחילת המסיבה אחוז האלכוהול הוא מקסימלי?
ב.מהו אחוז האלכוהול הממוצע של החוגג?
ג.מהו גילושל חתן הבר-מצווה?
ג.בדוק/בדקי תשובתך ע" י חישוב הזוויות בצורה גיאומטרית.
ד.מה צריכה להיות הזווית של ביחס לציר xכדי לקיים
01_Math_intro/e_01_8_013.html
תנועה
מטוס טס במהירות 500קמ"ש במשך 30דקות מערבה ולאחר מכן 70דקות בכיוון דרום-מערב.
א .מה יהיה המרחק שלהמטוס מנקודת המוצא לאחר 100דקות?
ב.מהו הכיוון מנקודת המוצא למיקום החדש של המטוס?
ג .מה היו המרחק והכיוון של המטוס מנקודת המוצא במידה ומהירותו הייתה 750קמ"ש ?
ד.בטא/י את התשובות לשלושת הסעיפים א,ב,ג ביחידות של מטריםסנטימטרים ומילימטרים.
01_Math_intro/e_01_8_014.html
וקטורים
נתונים שני ווקטורים,
ו-
א .למה שווה הווקטור השקול
.
?
ב.חשב/י את הזוויות בין ל , -בין ל-
ובין ל -בעזרת המכפילה הסקלרית ביניהם.
01_Math_intro/e_01_8_021.html
וקטורים
.
נתון הווקטור
א .כתוב/י ביטוי לווקטור היחידה .
ב .כתוב/י ביטוי לווקטור שכיוונו זהה לכיוון הווקטור
ג .מהי הזווית של הווקטור ביחס לציר ? x
אבל אורכו 2יחידות.
01_Math_intro/e_01_8_022.html
משוואות דיפרנציאליות
כאשר ו -קבועים וחיוביים
הוא ביחידות של אורך ו ביחידות של מסה
אם נתון ש
.נתונה המשוואה
ו
.א .בטא/י את היחידות של
.ב .מצא פתרון כללי למשוואה
מצא את קבועי המשוואה
ג .נתון כי
01_Math_intro/e_01_8_023.html
מעבר יחידות
.דנה נוסעת כל יום לעבודה וחזרה מרחק של 52ק"מ
נתון כי מחיר הדלק הוא 6.1ש"ח לליטר ,תצרוכת הדלק של הרכב שלה הוא 13ק"מ לליטר
.ועלות התיקונים הממוצעת לרכב הוא 1200ש"ח לעשרת אלפים ק"מ
.כמו כן ידוע שבחודש ישנם בממוצע כ 22ימי עבודה
מצאו את העלות החודשית של הנסיעה לעבודה
01_Math_intro/e_01_8_024.html
משוואות דיפרנציאליות
כאשר ו -קבועים וחיוביים.
נתונה המשוואה
א .בטא/י את היחידות של באמצעות היחידות של .
.
ב .הראה/י כי פתרון כללי ניתן לרשום בצורה
באמצעות
ג .בטא/י את
ד .נתון כי
ו-
ו-
.
.מצא/י את
ואת
.
04_Dimensions/e_04_2_002.html
ניתוח מימדים
נתונים הקבועים הבאים:
מהירות האור:
קבוע פלנק:
קבוע גרביטציה:
כלומר:
על ידי שימוש בגדלים אלו מצאו:
א( גודל בעל יחידות של זמן.
ב( גודל בעל יחידות של אורך.
ג( גודל בעל יחידות של מסה.
ד( גודל בעל יחידות של תדירות
ה( גודל בעל יחידות של צפיפות
.
.
04_Dimensions/e_04_2_004.html
ניתוח מימדים
נתונה המשוואה:
כאשר a,b,Dהם פרמטרים .נתון כי היחידות של uהם של צפיפות:
א( מצאו את היחידות של:
,
,
,a,b,D,au,
ב( הפכו את המשוואה הנתונה למשוואה הבאה:
כאשר
הינם חסרי מימד .מהם
?
04_Dimensions/e_04_2_005.html
מעבר יחידות
.1כמה dyneיש ב Neuton-אחד?
.2כמה ליטר יש במטר מעוקב )קוב( אחד?
cran .3היא יחידת נפח בריטית עבור דייג של דגי הרינג ,כאשר - 1cran=170.474Lבערך 750דגים .משלוח של cran 1255
של דגים מגיע לערב הסעודית .במכס הסעודי צריך להצהיר לפי מידת הנפח המקומית שהיא covidoמעוקב ,כאשר covido 1
= .cm 48.26כמה הדגים הוצהרו במכס? מה הוא נפח הדגים ביחידות ?SI
04_Dimensions/e_04_4_001.html
המרת זוית מרדיאן
.
רדיאן הוא הרדיוס1 שנשענת על זוית של
רדיאן מוגדרת כך שאורך הקשת1 זוית של
.
נתון שאורך קשת שנשענת על זוית שווה לזוית ברדיאנים כפול הרדיוס
.
שווה
ונתון שהיקף מעגל בעל רדיוס
. רדיאן1 חשבו כמה מעלות שווה
04_Dimensions/e_04_8_006.html
מעבר יחידות
? ביחידות של מטר לשניה, מיילים )יבשתיים( לשעה55 ( מהם1
. מטר1609 -נתון כי מייל יבשתי הוא כ
? גלונים בסמ"ק16 ( כמה הם2
. ס"מ2.54 - וכי אינץ' הוא כ, אינץ' מעוקב231 נתון כי גלון אחד הוא
07_Kinematics/e_07_1_011.html
Velocity, acceleration, trajectory
A particle moves in the
plain according to the law:
acceleration, c) distance from the coordinate origin.
,
. Find: a) velocity, b)
07_Kinematics/e_07_1_012.html
Velocity, acceleration, trajectory
A particle moves along the ellipse
acceleration. Find the radius of curvature.
so that
. Find the velocity and
07_Kinematics/e_07_1_013.html
Velocity, acceleration, trajectory
Trajectory is given by
,
, and
,
and
. Find
and .
07_Kinematics/e_07_1_014.html
Velocity, acceleration, trajectory
Trajectory is given by
and
,
and
between the velocity and acceleration as a function of time ?
. Find
and . What is the angle
07_Kinematics/e_07_1_015.html
Velocity, acceleration, trajectory
Two spacecraft are orbiting Earth. The orbit radii and angular velocities are the same but one (A) orbit is
always above the equator, while the other (B)passes above the poles. When B is above the equator the
spacecraft A is on the opposite side of the diameter. Find the vectors connecting A and B as a function of time.
07_Kinematics/e_07_1_016.html
Velocity, acceleration, trajectory
Express the velocity vector (in general) in terms of spherical coordinates and unit vectors
,
,
.
07_Kinematics/e_07_1_017.html
Velocity, acceleration, trajectory
A particle moves according to the law:
acceleration.
,
,
. Find the velocity and
07_Kinematics/e_07_1_018.html
Velocity, acceleration, trajectory
Derive the expression for the trajectory length for the motion with constant acceleration.
07_Kinematics/e_07_1_019.html
Velocity, acceleration, trajectory
A particle moves along the trajectory
Here , , and are constant parameters. Find
in cylindrical coordinates so that
as a function of . Same as a function of
.
.
07_Kinematics/e_07_1_020.html
Velocity, acceleration, trajectory
Given
as a function of time.
,
. Find the angle between the vectors of velocity and acceleration
07_Kinematics/e_07_1_021.html
Velocity, acceleration, trajectory
Given
,
of velocity and acceleration as a function of time.
. Find the angle between the vectors
07_Kinematics/e_07_1_022.html
Velocity, acceleration, trajectory
Given
,
. Find the tangential and normal acceleration as functions of time.
07_Kinematics/e_07_1_023.html
Velocity, acceleration, trajectory
Given
,
parameters for the absence of self-intersection.
. Find
and
. What are the conditions on the
07_Kinematics/e_07_1_024.html
Velocity, acceleration, trajectory
Given
,
origin to the particle as a function of time if
07_Kinematics/e_07_1_025.html
Velocity, acceleration, trajectory
,
. Find the distance from the coordinate
.
In a universe all bodies move away from the coordinate origin with the velocities
What would see an observer at an arbitrary position
?
, where
.
07_Kinematics/e_07_1_026.html
Velocity, acceleration, trajectory
A rabbit starts to run at
from the point
in the positive direction of axis
(magnitude !). A fox starts to run from
at the same moment and its velocity
the rabbit. How much time does it take to catch the rabbit.
with the velocity
always points towards
07_Kinematics/e_07_1_027.html
Velocity, acceleration, trajectory
Given
,
. Find
.
07_Kinematics/e_07_1_028.html
Velocity, acceleration, trajectory
Given
length (integral).
,
,
. Write down the expression for the path
07_Kinematics/e_07_1_029.html
Velocity, acceleration, trajectory
Given
acceleration.
,
,
, find the tangential and normal components of the
07_Kinematics/e_07_1_030.html
Velocity, acceleration, trajectory
A body starts from the equator of the sphere (``Earth'') with the radius
and moves all the time in the northeast direction so that the velocity magnitude remains constant. Where does it stop and how much time does it
take ?
07_Kinematics/e_07_1_031.html
Velocity, acceleration, trajectory
A cannonball is fired in an angle
over an inclined plane of angle
to hit the plane horizontally, the angles must fulfill the relation
. Show that in order for the cannonball
.
figure 1 - A cannonball is fired over an inclined plane.
07_Kinematics/e_07_1_032.html
Velocity, acceleration, trajectory
Find the minimal velocity that is needed in order to throw a body over a building with height h and width L.
07_Kinematics/e_07_1_033.html
Velocity Acceleration and Trajectory
Particle's motion is given by
and
,
Find
and
.
07_Kinematics/e_07_1_034.html
Velocity Acceleration and Trajectory
A ball is thrown in an angle
ground).
Find:
1.
.
2. The vector
and initial velocity
, and hits a building in a distance
at a hight
(above
(final velocity).
07_Kinematics/e_07_1_035.html
Velocity Acceleration and Trajectory
Particle moves according to
,
,
Find the normal acceleration and the curvature radius
.
07_Kinematics/e_07_1_036.html
Velocity Acceleration and Trajectory
Particle's trajectory is given by
,
where
and
are constants.
Find the magnitude of the normal and tangential acceleration.
07_Kinematics/e_07_1_037.html
תנועה
כתלות בזמן( ותאר בגרף את המהירות ואת התאוצה כפונקציהx) מצא את הפונקצית המיקום.x נתון גרף המתאר תנועה של גוף על ציר
.של הזמן
07_Kinematics/e_07_1_038.html
תנועה
חלקיק נע לאורך ציר zפונקצית המיקום שלו נתונה ע"י:
מהו מרחקו של החלקיקי מהראשית כאשר הוא נעצר? באיזה זמן זה קורה?
07_Kinematics/e_07_1_039.html
תנועה
גוף יוצא מנקודה כלשהיא ומהירותו מתוארת בגרף
א .תאר את התנועה ב 15-שניות הראשונות
ב .רשום משוואת מהירות
ג .מהי הדרך שעובר הגוף ב 6שניות הראשונות
ד .מהי משוואת המרחק
ה .מתי החלקיק יחזור לראשית
07_Kinematics/e_07_1_040.html
קינמטיקה
גוף נזרק כלפי מעלה במהירות של 30מטר לשניה.
א .היכן ימצא הגוף לאחר 2שניות.
ב .מה תהיה מהירותו לאחר 3שניות.
ג .כמה זמן תימשך עלייתו.
ד .מהו הגובה המקסימלי במסלולו.
ה .באיזה מהירות יגיע לנקודת הזריקה.
ו .לאחר כמה זמן הגוף יהיה 10מטר מתחת לנקודת הזריקה.
07_Kinematics/e_07_1_041.html
קינמטיקה
גוף נזרק המהירות של 30מטר לשניה בזווית של 57מעלות מעל האופק.
א .היכן ימצא הגוף לאחר 5שניות.
ב.לאחר כמה זמן יגיע לשיא הגובה ? מהו שיא הגובה.
ג .לאחר כמה זמן יגיע חזרה לגובה ההתחלתי.
ד .מהו טווח הזריקה ?
07_Kinematics/e_07_1_042.html
קינמטיקה
ממטוס הטס אופקית במהירות 360ק"מ לשעה ובגובה 980מטר מוטלת פצצה לעבר רכב הנע לכיוון המטוס במהירות 90ק"מ לשעה.
מה צריך להיות המרחק האופקי בניהם ברגע הטלת הפצצה על מנת להשיג פגיעה.
07_Kinematics/e_07_1_043.html
קינמטיקה
פגז נורה במישור משופע במהירות לוע של 100מטר לשנייה )ראה ציור( .איפה יפול הפגז ?
07_Kinematics/e_07_1_310.html
Velocity, acceleration, trajectory
. Show that in order for the cannonball
.
A cannonball is fired in an angle
over an inclined plane of angle
to hit the plane horizontally, the angles must fulfill the relation
figure 1 - A cannonball is fired over an inclined plane.
07_Kinematics/e_07_1_311.html
תאוצה תלוית מהירות
.מדידות הראו שמהירות הסירה אחר כך פרופורציונית ל-
מורידה מפרש ברגע
סירה הנעה במהירות
א( מצאו את תלות התאוצה במהירות.
ב( מצאו ביטוי מדויק למהירות לאחר הורדת המפרש.
ג( מצאו את הדרך כפונקציה של הזמן.
.
07_Kinematics/e_07_1_312.html
תנועה במעגל
חלקיק נע במעגל בעל רדיוס
א( כפונקציה של הזמן.
ב( כפונקציה של זווית הסיבוב.
בתאוצה משיקית קבועה
ובלי מהירות התחלתית .מצאו את גודל התאוצה הנורמלית
07_Kinematics/e_07_2_001.html
מניעת התרסקות
טייס קרב הטס במהירות של 1300ק"מ לשעה מבצע תמרוני התחמקות ממכ"ם בטיסה נמוכה ברום של 35mמעל לקרקע .בשלב מסוים
נתקל המטוס בקרקע העולה בשיפוע קל של ) 4.3ºשיפוע שקשה מאוד לזהות בעין(.כמה זמן יש לטייס לבצע תיקון על מנת למנוע
התרסקות?
07_Kinematics/e_07_2_002.html
זריקת גוף
בלוק נזרק מבניין בגובה ,hבמהירות התחלתית ,V0ובזווית θיחסית לאופק.
הראה/י כי המהירות הסופית של הבלוק לא תלויה בזווית הזריקה.
07_Kinematics/e_07_2_003.html
זרימה
נהר זורם צפונה במהירות .Vrבגדה המערבית נמצא אדם המשיט סירה לרוחב הנהר ,במהירות Vbיחסית לנהר .האדם מעוניין להגיע
אל הגדה הנגדית בדיוק מזרחית לנקודת מוצאו .נתון כי רוחב הנהר .d
.1באיזה כיוון הוא יהיה חייב להשיט את הסירה?
.2מה מהירות הסירה יחסית לאדמה?
.3כמה זמן תארך דרכו?
07_Kinematics/e_07_2_004.html
אסטרואיד
בקיץ 1989חצה אסטרואיד ) הוא נקרא בדיעבד (1989FCאת מסלול כדו"ה במרחק של km 650,000מאחוריו ,כמתואר באיור:
.1רדיוס מסלול כדו"ה הינו 150מיליון ק"מ ,ומשך ההקפה נמשך 365.25ימים .בעזרת נתונים אלה חשב/י בכמה זמן פספס
1989FCאת כדו"ה.
.2מהירות האסטרואיד הוערכה כ -74014קמ"ש .בהנחה שמקור האסטרואיד הוא בחגורת האסטרואידים ,הנמצאת במרחק של 300
מיליון ק"מ מכדו"ה ,הערך/י בכמה )באחוזים( צריך היה לשנות את המהירות ההתחלתית של האסטרואיד כך שהייתה מתרחשת
פגיעה?
07_Kinematics/e_07_2_005.html
חלקיק נע על מעגל
חלקיק נע על מעגל ברדיוס .3mבזמן t=0החלקיק חולף דרך נקודה ) (5,4ביחס לראשית הצירים .Oנתון כי מרכז המעגל נמצא ב)-
מצא/י:
,(5,7המהירות הזוויתית היא
.1
.2
.3
.4
.5
וקטור מיקום של החלקיק בכל זמן.
וקטור מהירות של החלקיק בכל זמן.
וקטור תאוצה של החלקיק בכל זמן.
המהירות הממוצעת באינטרוול זמן 5תחום הזויות בו נע וקטור המקום.
תחום הגדלים בו נמצא וקטור המקום.
07_Kinematics/e_07_2_006.html
תנועה במימד 1
מהירותו של חלקיק נתונה ע"י:
קבועים .נתון כי בזמן t=0מיקום החלקיק היה
כאשר
חשבו את מיקומו ותאוצתו של החלקיק כפונקציה של הזמן.
.
07_Kinematics/e_07_2_007.html
תנועה במימד 1
.לאחר 6שניות נגמר הדלק בטיל והוא מבצע תנועה בליסטית.
טיל נורה בכיוון אנכי בתאוצה קבועה של
א .מהו הגובה המירבי אליו יגיע הטיל?
ב .כמה זמן יחלוף מרגע ההמראה ועד הנחיתה?
ג .באיזו מהירות יפגע הטיל בקרקע?
07_Kinematics/e_07_2_008.html
תנועה במימד 1
כדור נזרק אנכית במהירות
הכדורים מגיעים בו זמנית לקרקע.
חשבו את גובה הבניין.
כלפיה מעלה מגג של בנין בגובה
.לאחר 2שניות מפילים מהגג כדור נוסף כך ששני
07_Kinematics/e_07_2_009.html
קינמטיקה
מהירותו של רץ באימון נתונה בגרף הבא:
א .מהו המרחק אותו עובר הרץ באימונו ?
)מיקום הרץ כתלות בזמן( ,שרטט/י גרף של
ב .בטא/י את
ג .מהי המהירות הממוצעת של הגוף ב 10-השניות הראשונות ?
כנגד .t
07_Kinematics/e_07_2_011.html
תנועה מעגלית
,הסובב סביב צירו במהירות זויתית קבועה .
מסה מונחת בתוך חרוט בעל זוית ראש
מקודקוד החרוט,
.אם המסה נמצאת בגובה
מקדם החיכוך הסטטי בין המסה והחרוט הוא
מהי המהירות הזויתית המקסימלית והמינימלית עבורן המסה לא תחליק במעלה או במורד החרוט?
07_Kinematics/e_07_2_012.html
תנועה מעגלית
אטום המימן מורכב מפרוטון סטטי ואלקטרון שמקיף אותו במהירות גבוהה .מודל בור מתאר את תנועת האלקטרון סביב הפרוטון באופן
אנלוגי לתנועת הירח סביב כדוה"א -כאשר את כח הכבידה מחליף הכח האלקטרוסטטי:
כאשר:
לפי מודל האטום של בור המהירות ורדיוס הסיבוב ברמת היסוד קשורים ע"י המשוואה:
כאשר
א .חשבו את רדיוס הסיבוב של האלקטרון.
ב .חשבו מה היה רדיוס הסיבוב אם במקום הכח האלקטרוסטטי היה כח הכבידה אחראי על תנועת האלקטרון
.השוו את הרדיוס לגודלה של מערכת השמש.
השתמשו בקבועים:
07_Kinematics/e_07_2_201.html
תרגיל
מהירות של גוף נתונה ע"י
?
א.מהם היחידות של
ב .מהו וקטור המקום של הגוף אם בזמן t=0הוא היה בראשית?
07_Kinematics/e_07_3_131.html
תנועה במהירות קבועה
באתר סקי רכבל מעלה את הגולשים לפסגת ההר .הרכבל עשוי קרוניות זהות בעלות אורך
קבועה .
בקטע מסויים ברכבל שאורכו ,עוברות הקרוניות לכבל איטי יותר שמהירותו
התלויות באמצעיתן על כבל הנע במהירות
.
* שימו לב כי גודל הקרונית סופי אך חיבור הקרונית לכבל נקודתי.
א .האם מרחק בין שתי קרוניות נשאר קבוע לפני ואחרי מעבר שתי הקרוניות את קטע ?
ב .הבע/י באמצעות נתוני השאלה את המרחק המינימלי בין שתי קרוניות עבורו לא תתרחש התנגשות .הנח/י כי
מדוע צריך להניח את זה.
בגבול
ג .מה קורה למרחק
והסבר/י
? הסבר/י.
07_Kinematics/e_07_3_132.html
זריקה אנכית
אבן נזרקת אנכית כלפי מעלה .בדרכה מעלה היא עוברת את הנקודה
.
במהירות
א .מהי המהירות ?
ב .מהו המרחק בין הנקודה בה גובה האבן מקסימלי לבין הנקודה ?
במהירות ,ואת הנקודה
הנמצאת
מטרים גבוה יותר
07_Kinematics/e_07_3_133.html
זריקה אנכית
אבן נזרקת מהקרקע אנכית כלפי מעלה במהירות .אדם עולה בכדור פורח במהירות קבועה
כעבור כמה זמן מרגע הזריקה משנה האבן את כיוון תנועתה
א .מנקודת ראותו של צופה על הקרקע?
.נתון
.
ב .מנקודת ראותו של האדם בכדור הפורח?
07_Kinematics/e_07_3_134.html
נפילה חופשית
כדור מושלך מבנין בגובה hהזמן שלוקח לכדור לעבור את המחצית השניה של הבנין הוא 3שניות.
מה גובה הבנין?
כלפי מטה.
נתון
07_Kinematics/e_07_3_135.html
תנועה בתאוצה קבועה במימד אחד
יוצא אלעד מבאר שבע ונוסע במהירות קבועה .בזמן כלשהוא נוסע יואב לאותו כיוון ונע בתאוצה קבועה
מבאר שבע ונע במהירות של
יואב נמצא במרחק של
.נתון כי בזמן
בזמן
של
.
א .מהו מרחקו של אלעד מבאר שבע כפונקציה של הזמן? בטא/י תשובתך באמצעות נתוני השאלה.
?
ב .מה היתה מהירותו של יואב בזמן
?
ג .מה היה מרחקו של יואב מבאר שבע בזמן
ד .מהו מרחקו של יואב מבאר שבע כפונקציה של הזמן? בטא/י תשובתך באמצעות נתוני השאלה.
?
ה .מה צריך להיות גודלה של המהירות על מנת שיואב יחלוף על פני אלעד בזמן
ו .שרטט/י איכותית באותו הגרף את מרחקם של אלעד ושל יואב מבאר שבע כפונקציה של הזמן.
07_Kinematics/e_07_3_136.html
תנועה בשני מימדים
נתונה ספימת מלחמה הנעה במהירות של 30קשרים לכיוון מזרח .צוללת הממוקמת 4ק"מ ממנה יורה לעבר הספינה טורפדו הנע
במהירות של 65קשרים .בנוסף ,נתון כי הזיהוי של הצוללת היה בכיוון 20) 020מעלות לכיוון צפון מזרח(
א( מה זמן הריצה של הטורפדו )כמה זמן יעבור עד לפגיעה(?
ב( מה כיוון ירי הטורפדו?
07_Kinematics/e_07_3_137.html
פיסיקה בגשם
בעת ירידת גשם ,האם נרטבים יותר כאשר רצים או כאשר הולכים?
07_Kinematics/e_07_4_001.html
טווח קרבי
טווח קרבי מוגדר כטווח בו פגז הנורה בזווית הגבהה מסוימת יפגע בכל מטרה הנמצאת בתוך הטווח ,כלומר לא יקרה מצב בו הפגז יחלוף
מעל למטרה.
מצא/י את הטווח הקרבי עבור הנתונים הבאים.
נתונים נוספים :מהירות לוע 7200 :קמ"ש
גובה המטרה 3.6 :מטר.
גובה נקודת היציאה של הפגז 1.8 :מטר
הפגיעה בסוף צריכה להיות במרכז המטרה
07_Kinematics/e_07_4_002.html
בליסטיקה עם גרר
נתון תותח הנמצא בקצה צוק בגובה m 200יורה אופקית פגז במשקל של ,kg 1במהירות לוע של .m/s 635
א( מה הטווח של התותח בהנחה שאין גרר?
ב( חשב/י את הטווח בהנחה שהפגז נורה דרך האוויר )הנחה סבירה (...המפעיל כוח גרר לפי הנוסחה
,כאשר
.
מה השגיאה בחישוב הטווח
בהנחת סעיף א'? )יש לפתור נומרית(
נוסחת עזר:
ג( באופן איכותי ,כאשר קיים גרר ,באיזה מקרה הטווח יהיה גבוהה יותר ,בזווית של 35°או ?55°
07_Kinematics/e_07_4_003.html
מרחק בלימה
נהג מתקרב לרמזור במהירות
א( נתון כי זמן התגובה האנושי הוא
,כאשר "לפתע" )כך לפחות הוא טוען (...התחלף האור לכתום.
,מקדם החיכוך בין הגלגלים לכביש הוא
.מה הוא המרחק
מהצומת ,שבו צריך להימצא הנהג כך שהוא יספיק לעצור לפני הרמזור?
המינימאלי
ב( בהנחה שהאור הכתום דולק במשך 1.5לפני שהוא מתחלף לאדום ,ושרוחב הצומת היא 25מטרים ,מה הוא המרחק המקסימאלי
שבו על הנהג להימצא כדי שיספיק לחצות את הצומת לפני שהאור מתחלף לאדום?
ג( פי כמה תשתנה התשובה לסעיף א' כאשר יורד גשם והכביש רטוב?
(
)מקדם החיכוך בין הגלגלים לאספלט הרטוב הוא
07_Kinematics/e_07_4_004.html
גלגלות
.נתונה המערכת המתוארת באיור הבא:
א( מצא/י את
ב( אם נתון כי
כך שהמערכת תישאר במנוחה
,מה ,תהיינה תאוצות הגופים
וכמו"כ נתון כי הגלגלות והחוטים חסרי מסה וחיכוך
07_Kinematics/e_07_4_005.html
תנועה במימד אחד
אופנוע ומכונית מתחילים את תנועתם ב t=0
נתון מיקום האופנוע ע"י המשוואה:
נתון מיקום המכונית ע"י המשוואה:
א(מהם המיקומים והמהירויות ההתחלתיות של האופנוע והמכונית?
ב(באיזה זמן משנה הופנוע את כיוון ההתקדמות ?
ג(מהוא המרחק בין המכונית לאופנוע כפונקציה של הזמן?
ד(מתי הם נפגשים?
ופתרו בעזרתם את סעיפים ג ו ד
ה(צירו גרפית את
07_Kinematics/e_07_4_006.html
נפילה חופשית
כדור מושלך מבנין בגובה hהזמן שלוקח לכדור לעבור את המחצית השניה של הבנין הוא 3שניות.
מה גובה הבנין?
כלפי מטה.
נתון
07_Kinematics/e_07_4_007.html
תאוצה משתנה
חלקיק מאיץ ממנוחה בתאוצה
מהראשית.
נתון שלאחר 3שניות החלקיק נמצא במרחק
חשבו את מיקום החלקיק כפונקציה של הזמן.
07_Kinematics/e_07_4_008.html
קינמטיקה
בזווית מעל ציר , xצופה מודד את המרחק שהכדור פגע בקרקע.
כדור נזרק מהראשית במהירות
הצופה מדד מרחק dמהראשית .מצאו את .
מהו עבורו dמקסימלי?
?
כמה פתרונות יש עבור
מצאו את משוואת המסלול של הכדור
נתון תאוצת הכובד gכלפי מטה.
07_Kinematics/e_07_4_009.html
קינמטיקה
חלקיק מוגבל לנוע על מעגל ברדיוס .R
נתון שגודל המהירות של החלקיק
מצאו את משוואת המיקום והתאוצה של החלקיק.
07_Kinematics/e_07_4_010.html
תנועה מעגלית
חלקיק מוגבל לנוע על מעגל ברדיוס .R
נתון שגודל המהירות של החלקיק
מצאו את משוואת המיקום של החלקיק.
07_Kinematics/e_07_4_011.html
חלקיק נע על מעגל
חלקיק נע על מעגל ברדיוס .3mבזמן t=0החלקיק חולף דרך נקודה ) (5,4ביחס לראשית הצירים .O
מצא/י:
נתון כי מרכז המעגל נמצא ב ,(5,7)-המהירות הזוויתית היא
.1
.2
.3
.4
.5
.6
וקטור מיקום של החלקיק בכל זמן.
וקטור מהירות של החלקיק בכל זמן.
וקטור תאוצה של החלקיק בכל זמן.
ל
המהירות הממוצעת בין
תחום הזויות בו נע וקטור המקום.
תחום הגדלים בו נמצא וקטור המקום.
.
07_Kinematics/e_07_4_012.html
תנועה יחסית
שלג יורד בכיוון אנכי במהירות
נהג נוסע במהירות
.
בכיוון אופקי,
חשבו באיזו זווית יראה הנהג את השלג הנופל.
07_Kinematics/e_07_4_013.html
גשם על רכבת
רכבת נוסעת מזרחה במהירות של 15מטר לשניה .טיפות גשם הנופלות אנכית יחסית לכדור הארץ ,מתוות על זגוגית חלונות הרכבת
עקבות
הנטויות בזווית של 30מעלות לאנך )יחסית לנוסע ברכבת(.מצא
א -מהו הרכיב האופקי של מהירות הטיפות יחסית לארץ ? יחסית לרכבת ?
ב -מהי מהירות הטיפות יחסית לארץ ? יחסית לרכבת ?
07_Kinematics/e_07_4_014.html
ירי קליע
קליע נורה במהירות
מעל ציר ה
ובזוית
,מטנק הנוסע במהירות
בכיוון ההפוך לכיוון תנועת הקליע.
תאוצת הכבידה היא
א .כעבור כמה זמן יגיע הקליע לגובהו המקסימלי.
ב .מה יהיה מרחק הפגיעה של הקליע ביחס לנקודת הירי.
טנק שני ,נייח ,יורה מאותה נקודה ובאותה מהירות התחלתית.
ג .מה צריכה להיות זוית היריה שלו על מנת שטווח הפגיעה יהיה זהה?
07_Kinematics/e_07_4_015.html
תנועה יחסית
העולה במהירות במעלה מישור משופע כבציור
מקרונית באורך
בכיוון אנך למישור המשופע.
זורקים כדור במהירות
מצא את גודלה המקסימלי של כך שהכדור יפול חזרה בתוך הקרונית
נתונה תאוצת הכובד
07_Kinematics/e_07_4_016.html
תנועה יחסית
נהר זורם בזווית מעל ציר xמהירות הזרימה
שהסירה עוברת בציר yהוא L
רוחב הנהר ,dסירה שטה מצד ימין לשמאל לפי החץ האדום נתון שהמרחק
מצאו את כיוון מהירות הסירה ביחס לנהר אם נתונה מהירות הסירה
07_Kinematics/e_07_5_021.html
קינמטיקה
מהירותו של רץ באימון נתונה בגרף הבא:
א .מהו המרחק אותו רץ הרץ באימונו ?
)מיקום הרץ כתלות בזמן( ,שרטט/י גרף של
ב .בטא/י את
ג .מהי המהירות הממוצעת של הגוף ב 10-השניות הראשונות ?
ד .מה צבע האימונית )" טרלינג" ( של הרץ ?
כנגד .t
07_Kinematics/e_07_5_022.html
קינמטיקה
אבן נופלת מגובה 100מטרים )מתחילה ממנוחה(.
א .מה תהיה מהירותה ומרחקה מהקרקע אחרי שניה ?
ב .מהו זמן הנפילה הכולל ?
ג .מה תהיה מהירותה ברגע הפגיעה בקרקע ?
ברגע עזיבת האבן זורקים כלפי מעלה סלע ,במהירות התחלתית של 3מ\ש.
ד .מהו הגובה המכסימלי אליו יגיע הסלע ?
ה .מי יגיע לקרקע קודם האבן או הסלע ?
07_Kinematics/e_07_5_023.html
קינמטיקה
מיקום של חלקיק נתון ע" י וקטור המקום:
א .מצא/י את מהירות החלקיק כתלות בזמן .מהי המהירות ההתחלתית ?
ב .מצא/י את תאוצת החלקיק כתלות בזמן.
?
בזמן
ו
ג .מה ערכם של
07_Kinematics/e_07_5_024.html
קינמטיקה
כדור שלג מחליק במורד גג הנטוי בזווית של 400כמוראה .גובה הגג 14מטרים ומהירות עזיבת הכדור את הגג 8מ\ש.
א .באיזה מרחק מהקיר יפגע הכדור בקרקע ?
ב .אדם שגובהו 2מטרים עומד במרחק 6מטרים מהקיר .האם הוא יחטוף ?
07_Kinematics/e_07_5_025.html
קינמטיקה
אדם עומד על קרונית הנעה במהירות קבועה של 9.1מ\ש .הוא מעוניין לזרוק כדור כך שיעבור דרך חישוק הנמצא 4.9מטרים מעל
הנקודה ממנה הכדור עוזב את ידו .לא רק זה ,הוא גם מעוניין שהכדור יעבור אופקית דרך החישוק .מהירות זריקת הכדור )יחסית לאדם
הזורק( היא 10.8מ\ש.
באיזה מרחק אופקי צריך האדם לשחרר את הכדור ?
07_Kinematics/e_07_5_026.html
קינמטיקה
.
שחקן כדורסל מחזיק בידו כדורסל וזורק אותו לסל ממרחק של
.גובה הסל הוא
מעל ידי השחקן וזווית הזריקה היא
?א .מהי מהירות הזרקה לסל
)ב .מהי מהירות הכניסה לסל? )גודל וזווית
07_Kinematics/e_07_5_033.html
קינמטיקה
חלקיק נע לאורך ציר xעל פי הביטוי:
א .מצא/י את תאוצתו של הגוף?
ב .מהי מהירותו ההתחלתית )ב (t=0 -של הגוף ,ומהו מיקומו ההתחלתי?
ג .מצא/י ביטוי כללי למהירותו של הגוף כתלות בזמן .t
ד .מהי מהירותו בזמן ? t = 4 sec
07_Kinematics/e_07_5_034.html
קינמטיקה
בכניסה לבאר שבע ,ברחוב רגר ,שני רמזורים ברצף .המרחק ביניהם הוא 500מטרים.
מכונית נוסעת במהירות קבועה וחוצה את הרמזור הראשון ברגע שבו הוא מתחלף לירוק.
זמן המופע של כל אחד מהרמזורים הוא 30שניות) .נניח שלרמזור רק שני מצבים -אדום וירוק ,נתעלם מהצהוב שביניהם(.
הרמזור השני הופך ירוק 6שניות אחרי שהראשון הפך ירוק.
מצאו את תחום המהירויות הקבועות בקמ"ש )בתחום הפחות או יותר סביר שבין 40ל 70קמ"ש( שעל המכונית לנסוע כדי לתפוס "גל
ירוק" ,כלומר ,לעבור את שני הרמזורים ברצף.
)נניח בשאלה זו שהמכונית נמצאת לבד על הכביש ,ויכולה לנסוע במהירות קבועה(
07_Kinematics/e_07_5_035.html
קינמטיקה
מהירותו של רץ באימון נתונה בגרף הבא:
א .מהו המרחק אותו רץ הרץ באימונו ?
כנגד .t
)מיקום הרץ כתלות בזמן( ,שרטט/י גרף של
ב .בטא/י את
ג .מהי המהירות הממוצעת של הגוף ב 10-השניות הראשונות ?
ד .שרטט באופן סכמטי גרף המתאר את תאוצת הרץ כפונק' של הזמן?
07_Kinematics/e_07_6_001.html
קינמטיקה
אלקטרון במהירות Vנכנס לשדה מגנטי Bנתון שהשדה גורם לאלקטרון לתאוצה בניצב לכיוון התקדמותו בגודל
נתון שהמרחק בציר xשהאלקטרון בער בתוך השדה הוא .d
מצאו את המרחק שהאלקטרון עבר בציר .y
מצאו את ההיסט בכיוון התקדמותו של האלקטרון.
07_Kinematics/e_07_6_002.html
קינמטיקה
נתונה תאוצת חיכוך של כדור באוויר
כדור נזרק במהירות בזווית מעל ציר x
מצו את
07_Kinematics/e_07_8_008.html
Kinematics
A particle leaves the origin at t = 0 with an initial velocity vo = (3.6 m/s)i. It experiences a constant acceleration
a = (-1.2 m/s2)i – (1.4 m/s2)j.
?(a) At what time does the particle reach its maximum x coordinate
?(b) What is the velocity of the particle at this time
?(c) Where is the particle at this time
07_Kinematics/e_07_8_022.html
קינמטיקה
אצן אולימפי מקווה לסיים את ריצת 5000המטרים בפחות מ 13 -דקות .אם לאחר 11דקות של ריצה במהירות קבועה נשארו לו 800
מטרים לסוף המסלול ,ותאוצתו המקסימלית היא [m/sec2] 0.2מהו הזמן המינימלי שעליו להאיץ ע" מ לעמוד בזמן של 13דקות.
07_Kinematics/e_07_8_023.html
קינמטיקה
חלקיק " משוגע" נע לאורך ציר xעל פי הביטוי:
א .מצא/י את תאוצתו של הגוף?
ב .מהי מהירותו ההתחלתית )ב (t=0 -של הגוף ,ומהו מיקומו ההתחלתי?
ג .מצא/י ביטוי כללי למהירותו של הגוף כתלות בזמן .t
ד .מהי מהירותו בזמן ? [t = 4 [sec
ה .גוף אחר ,לא פחות משוגע ,מאיץ לאורך הציר על פי הביטוי:
m/sec 1וכן . x(t = 0) = 5 m
.מצא/י ביטוי להעתק הגוף
כאשר = )v(t = 0
07_Kinematics/e_07_8_024.html
קינמטיקה
נתון גרף המתאר את העתקו של גוף לאורך ציר .x
א .מהי מהירותו הממוצעת ב 9 -השניות הראשונות ?
ב .מהי מהירותו הרגעית בזמן ? t = 3 sec
ג .כעבור כמה זמן חוזר הגוף לנקודת המוצא ?
ד .מהי המהירות הממוצעת בין הזמן שמצאת בסעיף ג' ל? t = 15 sec -
07_Kinematics/e_07_8_025.html
קינמטיקה
סטודנט )ר' ,שם בדוי( קם בבוקר ויוצא לתירגול בפיסיקה בשעה ) 7:45שאלה תיאורטית בלבד( .המרחק מביתו לכיתה הוא .[m] 1200
בתחילת דרכו צועד הסטודנט העייף במהירות קבועה של .[m/sec] 1לאחר [m] 500מבין ר' כי הוא עומד לאחר ומאיץ בתאוצה
קבועה במשך כ 20 -שניות למהירות גבוהה יותר .בהנחה כי ר' ממשיך ללכת באותה מהירות )לאחר שהאיץ( עד לכיתה ומגיע בדיוק
בשעה :8:00
א .מה הייתה התאוצה בה נאלץ ר' להאיץ ?
ב .מה הייתה מהירותו לאחר שהאיץ ?
ג .בהתחשב בנסיבות ,הערך/י מתי הלך ר' לישון בלילה לפני.
07_Kinematics/e_07_8_031.html
קינמטיקה
תותח מופנה בזווית של o37מעל האופק ומהירות הלוע שלו ] .v0 = 750 [m/sec
א .מהו הטווח של התותח ?
ב .מהו זמן המעוף של הפגז ?
ג .מה תהיה מהירותו של הפגז בעת הפגיעה בקרקע ?
ד .מהו הטווח המרבי של התותח ובאיזו זווית הוא מושג ?
07_Kinematics/e_07_8_032.html
קינמטיקה
מטוס דואר באוסטרליה צולל בזווית של 30מעלות מתחת לאופק ובמהירות של ] .v0 = 100 [m/secכאשר המטוס נמצא במרחק
אופקי של [km] 2מתיבת הדואר של חוות הקנגרו הוא מפיל את חבילת הדואר הנופלת בדיוק בתיבה .באיזה גובה מעל לקרקע הפיל
המטוס את החבילה ?
07_Kinematics/e_07_8_033.html
קינמטיקה
נהר זורם צפונה במהירות של ] .v = 1.5[m/secסירה שטה במהירות ] v = 4[m/secבניצב לנהר )מזרחה(.
א .מהי מהירות הסירה יחסית לארץ ? )שימו לב :יש להציג את המהירות כווקטור(
ב .רוחב הנהר הוא .[m] 1000כמה זמן דרוש לסירה לחצות אותו ?
ג .מה יהיה מרחק הסירה ,כאשר תגיע לגדה המזרחית ,מנקודת היציאה ?
ד .לאחר הגיעו לגדה המזרחית מיהר רב החובל )ר' ,שם בדוי( לחזור הביתה לארוחת הצהריים .לשם כך עליו לחצות את הנהר בדרך
הקצרה ביותר .לאיזו זווית עליו להפנות את חרטום הסירה כדי להספיק לאכול ארוחה חמה ?
07_Kinematics/e_07_8_034.html
קינמטיקה
כדור נזרק אנכית במהירות v0כלפי מעלה ,מגג של בניין בגובה ] .h [mלאחר כ [sec] 2 -מפילים מהגג כדור נוסף .שני הכדורים
מגיעים בו זמנית לקרקע.
א .אם ידוע כי ] v0 = 13 [m/secמהו גובה הבניין ?
ב .מהו הערך המקסימלי של v0שעבורו יכולים שני הכדורים להגיע יחד ? )ערך זה אינו תלוי ב(h -
ג .מהו הערך המינימלי של v0שעבורו יכולים שני הכדורים להגיע יחד ?
07_Kinematics/e_07_8_035.html
קינמטיקה
עגלה שאורכה Lנעה ימינה בתאוצה קבועה .aכאשר מהירות העגלה uנזרק כדור מהקצה הימני של העגלה כלפי מעלה במהירות .vo
א .מהי המהירות המקסימלית umהמותרת כך שהכדור ייפול בתוך העגלה?
ב .מהי המהירות voהמקסימלית המותרת כך שהכדור ייפול בתוך העגלה?
ג .עבור voמקסימלי ,מהי הדרך האופקית שעובר הכדור ביחס לארץ בזמן התעופה?
07_Kinematics/e_07_8_036.html
Kinematics
You drive on Interstate 10 from San Antonio to Houston, one-half the time at 35.0 mi/h (= 56.3 km/h) and the
other half at 55.0 mi/h (= 88.5 km/h).
On the way back you travel one-half the distance at 35.0 mi/h and the other half at 55.0 mi/h. What is your
average speed
(a) from San Antonio to Houston?
(b) from Houston back to San Antonio?
and
(c) for the entire trip?
07_Kinematics/e_07_8_037.html
Kinematics
The position of an object moving in a straight line is given by x = At + Bt2 + Ct3,
where A = 3.0 m/s, B = -4.0 m/s2, and C = 1.0 m/s3.
(a) What is the position of the object at t = 0, 1, 2, 3, and 4 s?
(b) What is the object's displacement between t = 0 and t = 2 s? Between t = 0 and t = 4 s?
(c) What is the average velocity for the time interval from t = 2 to t = 4 s? From t = 0 to t = 3 s?
07_Kinematics/e_07_8_038.html
Kinematics
Two trains, each having a speed of 34 km/h, are headed toward each other on the same straight track. A bird
that can fly 58 km/h flies off the front of one train when they are 102 km apart and heads directly for the other
train. On reaching the other train it flies directly back to the first train, and so forth.
(a) How many trips can the bird make from one train to the other before the trains crash?
(b) What is the total distance the bird travels?
07_Kinematics/e_07_8_039.html
Kinematics
The position of a particle moving along the x axis is given by x = A + Bt3, where A = 9.75 cm and B = 1.50
cm/s3. Consider the time interval t = 2 to t = 3 s and calculate
(a) the average velocity;
(b) the instantaneous velocity at t = 2 s;
(c) the instantaneous velocity at t = 3 s;
(d) the instantaneous velocity at t = 2.5 s;
and
(e) the instantaneous velocity when the particle is midway between its positions at t = 2 and t = 3 s.
07_Kinematics/e_07_8_040.html
Kinematics
For each of the following situations, sketch a graph that is a possible description of position as a function of
time for a particle that moves along the x axis. At t = 1 s, the particle has
(a) zero velocity and positive acceleration;
(b) zero velocity and negative acceleration;
(c) negative velocity and positive acceleration;
(d) negative velocity and negative acceleration.
(e) For which of these situations is the speed of the particle increasing at t = 1 s?
07_Kinematics/e_07_8_041.html
Kinematics
If the position of an object is given by x = (2.0 m/s3)t3, find
(a) the average velocity and the average acceleration between t = 1 and t = 2 s and
(b) the instantaneous velocities and the instantaneous accelerations at t = 1 and t = 2 s.
(c) Compare the average and instantaneous quantities and in each case explain why the larger one is larger.
07_Kinematics/e_07_8_042.html
Kinematics
A train started from rest and moved with constant acceleration. At one time it was traveling at 33.0 m/s, and
160 m farther on it was traveling at 54.0 m/s. Calculate
(a) the acceleration,
(b) the time required to travel the 160 m,
(c) the time required to attain the speed of 33.0 m/s,
and
(d) the distance moved from rest to the time the train had a speed of 33.0 m/s.
07_Kinematics/e_07_8_043.html
Kinematics
At the instant the traffic light turns green, an automobile starts with a constant acceleration of 2.2 m/s2. At the
same instant a truck, traveling with a constant speed of 9.5 m/s, overtakes and passes the automobile.
(a) How far beyond the starting point will the automobile overtake the truck?
(b) How fast will the car be traveling at that instant?
(It is instructive to plot a qualitative graph of x versus t for each vehicle.)
07_Kinematics/e_07_8_044.html
Kinematics
The velocity of a particle moving in the xy plane is given by v = [(6.0m/s2)t - (4.0 m/s3)t2]i + (8.0 m/s)j.
Assume t > O.
(a) What is the acceleration when t = 3 s?
(b) When (if ever) is the acceleration zero?
(c) When (if ever) is the ve¬locity zero?
(d) When (if ever)does the speed equal 10 m/s?
07_Kinematics/e_07_8_045.html
Kinematics
A particle is moving in the xy plane with velocity v(t) = vx(t)i + vy(t)j and acceleration a(t) = ax(t)i + ay(t)j.
By taking the appropriate derivative, show that the magnitude of v can be constant only if axvx + ayvy = 0.
07_Kinematics/e_07_8_046.html
Kinematics
The legal speed limit on a highway is changed from 55 rni/h (= 88.5 km/h) to 65 rni/h (= 104.6 km/h).
How much time is thereby saved on a trip from the Buffalo entrance to the New York City exit of the New
York State
Thruway for someone traveling at the higher speed over this 435-mi (= 700-km) stretch of highway?
07_Kinematics/e_07_8_047.html
Kinematics
A car travels up a hill at the constant speed of 40 km/h and returns down the hill at the speed of 60 km/h.
Calculate the average speed for the round trip.
07_Kinematics/e_07_8_048.html
Kinematics
An iceboat sails across the surface of a frozen lake with constant acceleration produced by the wind.
At a certain instant its velocity is 6.30i - 8.42j in m/s.
Three seconds later the boat is instantaneously at rest.
What is its acceleration during this interval?
07_Kinematics/e_07_8_049.html
Kinematics
A particle moves so that its position as a function of time is
r(t) = Ai + Bt2j + Ctk
where A = 1.0 m, B = 4.0 m/s2, and C = 1.0 m/s.
Write expressions for
(a) its velocity and
(b) its acceleration as functions of time.
(c) What is the shape of the particle's trajectory?
07_Kinematics/e_07_8_050.html
Kinematics
A ball rolls off the edge of a horizontal tabletop, 4.23 ft high. It strikes the floor at a point 5.11 ft horizontally
away from the edge of the table.
(a) For how long was the ball in the air?
(b) What was its speed at the instant it left the table?
07_Kinematics/e_07_8_051.html
Kinematics
You throw a ball from a cliff with an initial velocity of 15 m/s at an angle of 20º below the horizontal. Find
(a) its horizontal displacement and
(b) its vertical displacement 2.3 s later.
07_Kinematics/e_07_8_052.html
Kinematics
Show that the maximum height reached by a projectile is ymax = (vo sin φ)2/2g, where g = 9.8 m/s2 φ is the
angle
between the initial trajectory and the plane of the ground.
07_Kinematics/e_07_8_053.html
Kinematics
A ball rolls off the top of a stairway with a horizontal velocity of magnitude 5.0 ft/so The steps are 8.0 in. high
and 8.0 in. wide.
Which step will the ball hit first?
07_Kinematics/e_07_8_054.html
Kinematics
A person walks up a stalled l5-m-long escalator in 90 s. When standing on the same escalator, now moving, the
person is carried up in 60 s.
How much time would it take that person to walk up the moving escalator?
Does the answer depend on the length of the escalator?
07_Kinematics/e_07_8_055.html
Kinematics
A transcontinental flight at 2700 mi is scheduled to take 50 min longer westward than eastward.
The air speed of the jet is 600 mi/h.
What assumptions about the jet-stream wind velocity, presumed to be east or west, are made in preparing the
schedule?
07_Kinematics/e_07_8_056.html
<!--[if !vml]-->Kinematics
A certain airplane has a speed of 180 milh and is diving at an angle of 27° below the horizontal when a radar
decoy is released.
The horizontal distance between the release point ilnd the point where the decoy strikes the ground is 2300 ft.
(a) How long was the decoy in the air?
(b) How high was the plane when the decoy was released? See the figure below.
<!--[endif]-->
07_Kinematics/e_07_8_057.html
Kinematics
A particle A moves along the line y = d (30 m) with a constant velocity v (v = 3.0 m/s) directed parallel to the positiv
in the figure below. A second particle B starts at the origin with zero speed and constant acceleration a (a = 0.40 m/s
at the same instant that particle A passes the y axis.
What angle θ between a and the positive y axis would result in a collision between these two particles?
07_Kinematics/e_07_8_058.html
Kinematics
A ball is dropped from a height of 39.0 m. The wind is blowing horizontally and imparts a constant acceleration of 1
(a) Show that the path of the ball is a straight line and find the values of R and θ in the figure below.
(b) How long does it take for the ball to reach the ground?
(c) With what speed does the ball hit the ground?
07_Kinematics/e_07_8_059.html
Kinematics
You throw a ball with a speed of 25.3 m/s at an angle of 42.0° above the horizontal directly toward a wall as
shown in the figure below.
The wall is 21.8 m from the release point of the ball.
(a) How long is the ball in the air before it hits the wall?
(b) How far above the release point does the ball hit the wall?
(c) What are the horizontal and vertical components of its velocity as it hits the wall?
(d) Has it passed the highest point on its trajectory when it hits?
07_Kinematics/e_07_8_060.html
Kinematics
A projectile is fired from the surface of level ground at an angle φo above the horizontal.
(a) Show that the elevation angle θ of the highest point as seen from
the launch point is related to φo by tan θ = (1/2) tan φo.
(b) Calculate θ for φo = 45°.
07_Kinematics/e_07_8_061.html
חץ ומטרה
קשת יורה חץ לעבר תפוח במרחק ידוע ובגובה ידוע.
באיזו זוית עליו לכוון את הקשת אם ברגע הירייה התפוח החל בנפילה חופשית
10_Newton/e_10_1_011.html
weight of a passenger
A plane takes off with the acceleration
passenger ?
10_Newton/e_10_1_012.html
at the angle
to the horizon. What is the weight of the 75 kg
Inertial and noninertial reference frames
What should be the length of the day on Earth to compensate the gravity at the equator ?
10_Newton/e_10_1_013.html
Inertial and noninertial reference frames
A body starts moving with the velocity from the center of the rotating disk (angular velocity
external forces. Describe the motion from the point of view of the rotating observer.
). There are no
10_Newton/e_10_1_014.html
Inertial and noninertial reference frames
What is the weight of a standing 1000 kg car on the equator ? What is its weight if it is moving in the east
direction with the velocity 300 km/hour ?
10_Newton/e_10_1_015.html
Inertial and noninertial reference frames
A biker enters a quarter-circle turn of the radius
body and the vertical ?
with the velocity . What is the angle between the biker's
10_Newton/e_10_1_016.html
Inertial and noninertial reference frames
A body hangs on a rope from the ceiling in a standing train. The train starts moving with the acceleration .
What is the angle between the rope and the vertical ?
10_Newton/e_10_1_017.html
Inertial and noninertial reference frames
A body hangs on a rope from the ceiling in a rotating (angular velocity
center is . What is the angle between the rope and the vertical ?
) cell. The distance from the rotation
10_Newton/e_10_1_018.html
Inertial and noninertial reference frames
A horizontal carousel rotates with the angular velocity
?
. What is the weight of a person who sits at the radius
10_Newton/e_10_1_019.html
Inertial and noninertial reference frames
A project of a space station suggests rotation in order to produce artificial gravity. If the diameter of the station
is 20 m, what should be the rotation period in order to produce the gravity equivalent to
?
10_Newton/e_10_1_020.html
Inertial and noninertial reference frames
A body is moving along
axis with constant velocity
in the inertial (standing) frame. Write down
and
in the rotating frame. What is the direction of acceleration as a function of time in the rotating
frame ?
10_Newton/e_10_1_021.html
Inertial and noninertial reference frames
A body falls with the velocity
Newton law in its frame.
(because of the air drag force). Write down the second
10_Newton/e_10_1_022.html
Inertial and noninertial reference frames
A river flows from the north to the south in the northern hemisphere at the latitude . The flow velocity is
the river width is . What is the difference of the water level at the western and eastern coasts ? (Hint:
Coriolis.)
and
10_Newton/e_10_1_031.html
Particle dynamics, Newton laws
A particle is moving so that
,
, where , , and
are constants. Find the force.
10_Newton/e_10_1_032.html
Particle dynamics, Newton laws
A body (mass
velocity. Find
) starts falling. The air friction force is
and
.
, where
and
is the body
) is thrown horizontally with the initial velocity . The air friction force is
and is the body velocity. Find
and
.
,
10_Newton/e_10_1_033.html
Particle dynamics, Newton laws
A body (mass
where
10_Newton/e_10_1_034.html
Particle dynamics, Newton laws
Force
acts on a particle (mass
) which is initially at rest. Find
and
.
10_Newton/e_10_1_035.html
Particle dynamics, Newton laws
At high speeds the air drag force (friction) is
velocity . Find
and
.
. A body is falling vertically in the air with the initial
10_Newton/e_10_1_036.html
Particle dynamics, Newton laws
A charged particle (charge , mass
) is accelerated by the electric field
. Find the trajectory.
10_Newton/e_10_1_037.html
Particle dynamics, Newton laws
A charged particle moves with constant velocity
(
- magnetic field). Find the electric field.
10_Newton/e_10_1_038.html
Particle dynamics, Newton laws
A charged particle (mass , charge , velocity ) enters a cylinder with the length . The entry point is at the
cylinder axis, and the particles enters at the angle
to the axis. There is a homogeneous magnetic field along
the axis inside the cylinder. At what distance from the axis the particle leaves the cylinder ?
10_Newton/e_10_1_039.html
Particle dynamics, Newton laws
A charged particle (mass
an electric field
where
, charge ) is at rest in an homogeneous magnetic field
. Suddenly, at
is switched on. The electric field is suddenly switched off at
,
. Describe the motion of the particle. What is its final energy ?
10_Newton/e_10_1_040.html
Particle Dynamics, Newton's Laws
A particle of mass
is at rest on top of a sphere. Suddenly it starts to slide.
(a) At which point it will leave the sphere?
(b) What is its velocity at that point?
10_Newton/e_10_1_041.html
Newton Laws
For the setting in the figure find the tension in each rope.
10_Newton/e_10_1_042.html
Newton Laws
The Atwood's Machine is composed of two unequal masses
from frictionless and massless pulley.
hunging on inflexible string
What is the tension in the string? If the string was hunging from the ceiling was is the mass that it can carry?
10_Newton/e_10_1_043.html
Particle Dynamics and Newton's Laws
A body free-fall in a presence of a drag force in the form
where
.
,
1. Draw the force diagram for the body during the free-fall.
2. Find the equation of motion of the body.
3. What is the terminal velocity, , of the body. The terminal velocity reached when the body is in
equilibrium.
4. Find the body velocity as a function of time. Assume
.
10_Newton/e_10_1_044.html
Particle Dynamics and Newton's Laws
On a circular hoop with radius there is a bead that can move freely without friction.
The hoop is rotated in a constant frequency
around the horizontal axis.
1. What are the forces that act on the bead in equilibrium.
2. Find the angle in that state as a function of .
3. What should be in order to move the bead to the center of the hoop? can the bead move beyond the center
of the hoop?
10_Newton/e_10_1_045.html
Particle Dynamics and Newton's Laws
A particle with mass
move in a magnetic field
Its initial velocity is
.
Find curvature radius.
10_Newton/e_10_1_046.html
Particle Dynamics and Newton's Laws
, where
.
A mass
is placed inside an upside down cone with an opening angle of .
The cone is rotated around it's symmetry axis in a constant angular velocity .
The friction coefficient between the mass and the cone is
and the mass is at height
from the head of the
cone.
?What are the maximal and minimal angular velocities in which the mass will stay in that height
10_Newton/e_10_1_047.html
חוקי ניוטון
כוח של 20ניוטון פועל בזווית של 30מעלות מעל ציר xעל גוף שמסתו 4ק"ג .הגוף מונח על משטח חלק.
א .מהי תאוצת הגוף
ב .תוך כמה זמן יעבור הגוף מרחק של 10מטר אם התחיל ממנוחה
10_Newton/e_10_1_048.html
חוקי ניוטון
גוף ששוקל 20ק"ג נמצא על משטח משופע בזווית של 30מעלות וללא חיכוך
א .מה גודלו של הכוח שהמישור מפעיל על הגוף
ב .מהי תאוצת הגוף
10_Newton/e_10_1_049.html
חוקי ניוטון
שתי משקולות תלויות ע"י חבל על גלגלת חסרת חיכוך ומסה .משקולת אחת שוקלת 10ק"ג והשנייה 20ק"ג .בזמן t = 0מקנים
למשקולת של ה 10 -ק"ג מהירות של 5מטר לשנייה כלפי מטה.
א .מתי תחזור המשקולת של ה 10 -ק"ג לנקודת ההתחלה?
ב .מה תהיה מהירותה ברגע החזרה?
ג .מה המרחק המקסימלי שהמשקולת תגיע מתחת לנקודת ההתחלה?
10_Newton/e_10_1_050.html
חוקי ניוטון
שני אנשים רוצים למתוח חבל שאורכו 20מטר כדי להרים משא של 1ק"ג התלוי במרכז.
האנשים יכולים להפעיל כוח משיכה מקסימלי של 300ניוטון וגובה הידיים שלהם מהריצפה הינו 1מטר.
מה יהיה גובה המשא מהריצפה? מצאו דרכים יותר אפקטיביות )בעזרת אותם האמצעים(?
10_Newton/e_10_1_051.html
חוקי ניטון
קרון נוסע במהירות 40מטר לשנייה .על הקרון מונחת קופסא .מקדם החיכוך בין הקופסא לקרון הינו
.
מה המרחק המינמלי לפני נקודת העצירה שהקרון חייב להתחיל ולהאט )בתאוצה קבועה( אם ברצונו לעצור מבלי שהקופסא תחליק.
10_Newton/e_10_1_052.html
חוקי ניטון
גוף נמצא על מישור בעל זווית משתנה .בהתחלה
א .באיזה זווית הגוף יתחיל להחליק.
מה תהיה תאוצתו ?
ו-
ב .עבור הזוויות
,
,
נתון
ולאט לאט מגדילים את הזווית.
10_Newton/e_10_1_053.html
חוקי ניטון
קרונית נוסעת ימינה בתאוצה .aמה צריכה להיות התאוצה aכדי שגוף שצמוד לקרונית מימין )ראה ציור( לא יחליק .בטא את התשובה
.
בעזרת
10_Newton/e_10_1_054.html
חוקי ניטון
קליע רובה שמסתו 5גרם יוצא מלוע של קנה רובה שאורכו 50ס"מ במהירות של 800מטר לשנייה .אם התאוצה בקנה קבועה מה
גודלו של הכוח שפועל על הקליע ?
10_Newton/e_10_1_055.html
חוקי ניוטון
מפילים גוף שמתחיל ממצב מנוחה .כוח התנגדות האויר הינו :
מצא את המהירות ) ,v(tהתאוצה ) ,a(tואת הכוח ) .F(tמה יקרה לכוח כאשר
.
.
10_Newton/e_10_1_056.html
חוקי ניוטון
גוף מחליק על פני משטח בקו ישר בכיוון ציר .xמיקומו ההתחלתי )בזמן (t = 0הוא x = 0ומהירותו ההתחלתית היא
נעצר לאחר שעבר מרחק Lכתוצאה מהחיכוך עם המשטח.
א .כמה זמן לקח לגוף לעבור את המרחק Lעד שנעצר?
ב .הראה.הראי שמקדם החיכוך הקינטי נתון על ידי הביטוי
.הגוף
.
10_Newton/e_10_1_057.html
תנועה מעגלית
.לרוע מזלו של הנהג
מכונית נטוסעת בלילה חרפי ומגיע לעיקול בכבישץ רדיוס העיקול הוא 320מטר וזווית הטיית הכביש היא
הכביש מכוסה שכבת קרח.
א .בהנחה שאין חיכוך בין צמיגי הגלגלים והכביש ,מה צריכה להיות מהירות המכונית על מנת שלא תחליק בעיקול?
ב .מה יקרה אם מהירות המכונית תהיה גבוהה מהערך המחושב בסעף א' ,ומה יקרה אם המהירות תהיה נמוכה מערך זה?
10_Newton/e_10_1_058.html
תנועה מעגלית
רוטור של מסוק רדיוסו 10מטר.
א .מה צריכה להיות המהירות הזויתית שלו כדי שקצה הרוטור יגיע למהירות הקול ) 1224ק"מ לשעה(.
ב .מצא את התדירות וזמן המחזור.
ג .מה מהירותה הקווית של נקודה הנמצאת באמצע להב הרוטור?
10_Newton/e_10_1_059.html
תנועה מעגלית
רוצים לסובב אבן על חוט .מסת האבן 10גרם ואורך החוט 40ס"מ .המתיחות המקסימלית המותרת לפני קריעה הינה 160ניוטון.
מהי המהירות המקסימלית המותרת ? מהו זמן המחזור ?
10_Newton/e_10_2_001.html
נפילה מכדור פורח
טום וג'רי נמצאים בכדור פורח היורד במהירות קבועה של .1.88m/sסה"כ מסתם ומסת הכדור פורח היא .kg 1080על הכדור פועל
.ברגע מסוים זורק טום את ג'רי מהכדור )מסיבותיו
כוח עילוי קבוע של 10.3kNכלפי מעלה ,בנוסף מפעיל האוויר כוח גרר
הוא ,(...כאשר מסתו היא .72.5kgברגע זה משתנה מהירות הכדור ,אולם בגלל הגרר מתייצבת המהירות )לאחר זמן מסוים( על מהירות
קבועה חדשה .מצא/י את מהירות הכדור כאשר הוא מגיע למהירות קבועה.
10_Newton/e_10_2_002.html
פועל בקרונית
נתון פועל היושב בקרונית התלויה על גבי חבל העובר דרך גלגלת )חסרת חיכוך שמותקנת בתקרה( ויורד חזרה לידיו של הפועל .מסת
הקרונית והפועל היא .95kg
.1מצא/י באיזה כוח צריך למשוך הפועל את החבל כדי לעלות למעלה במהירות קבועה.
.2מצא/י באיזה כוח צריך למשוך הפועל את החבל כדי לעלות למעלה בתאוצה של .1.3m/s2
10_Newton/e_10_2_003.html
מציאת מסילת תנועתו של הגוף דרך שדה כוח נתון
גוף נע דרך שדה כוח שמשוואתו היא
הגוף נכנס לשדה במהירות של
.
.
.1מצא/י את מסילת תנועתו של הגוף דרך השדה.
.2שרטט/י מסילה זו ).(.Mathematica , Matlab etc
.3מה יהיה מיקום הגוף לאחר חצי דקה?
10_Newton/e_10_2_004.html
חבל משתלשל
חבל אחיד שאורכו L=1.5mמונח על גבי שולחן אופקי חלק .קטע באורך b=15cmמשתלשל כמתואר בתרשים .ברגע מסוים מרפים
מהחבל ממנוחה והוא גולש כלפי מטה בהשפעת כוח הכובד.
.1חשב/י את מהירות החבל ברגע בו קצהו ניתק מהשולחןכמה זמן יעבור עד רגע התנתקות החבל מהשולחן?
10_Newton/e_10_2_005.html
החלקה על מישור משופע
גוף הנמצא על פני מישור משופע בזווית αנהדף במהירות אופקית התחלתית .V0מקדם החיכוך הקינטי בין הגוף לבין המישור הוא
המישור נבנה כך ש-
.1מה יהיו רכיבי התאוצה בכיוונים xו ,y -כשכיוון המהירות יצור זווית θעם כיוון ציר ה?x-
.2מה יהיה רכיב התאוצה המשיקית כפונקציה של ? θ
.3מהי המהירות כפונקציה של ,θומהי המהירות כאשר
10_Newton/e_10_2_006.html
אחיזת גלגלים בכביש
.1מה הוא מרחק הבלימה של רכב הנוסע במהירות של 100קמ"ש ,כאשר מקדם החיכוך בין הגלגלים לכביש הוא ? 0.8כמו כן
ידוע כי זמן התגובה הממוצע הוא 0.65שניות.
.2פי כמה עולה מרחק הבלימה כאשר יורד גשם והכביש רטוב?)מקדם החיכוך בין הגלגלים לאספלט הרטוב הוא (0.25
10_Newton/e_10_2_007.html
מסה מונחת על שולחן אופקי הנע במהירות זוויתית
סביב צירו .מקדם החיכוך הסטטי בין m1לשולחן הוא
מסה m1=0.5 kgמונחת על שולחן אופקי הנע במהירות זוויתית
.0.6חוט חסר מסה מחבר את m1עם ) m2=3.2 kgהתלויה במרכז השולחן( דרך גלגלת חסרת מסה וחיכוך
.1מצא/י תחום לגודלו של החלק של החוט הנמצא במצב אופקי ) ,(Rעבורו תישאר מסה m1במנוחה ביחס לשולחן.
.2באיזו מהירות זוויתית מינימלית יש לסובב את השולחן כאשר המסה m1נמצאת במרחק R0ממרכזו ,כדי שהיא תתחיל לנוע
החוצה?
10_Newton/e_10_2_008.html
נסיעת רכבת לאורך עיקול
רכבת מהירה יכולה לנסוע במהירות מקסימלי של 310קמ"ש.
.1אם הרכבת נוסעת במהירותה המקסימלית לאורך עיקול ,מה הוא רדיוס העיקול המינימלי כך שהנוסעים לא ירגישו תאוצה
הגדולה -מ? 0.05g
.2נתון שמקדם החיכוך בין גלגלי הרכבת לפסי הברזל הוא .0.6איזה שיפוע יש לתת למסילה כך שהרכבת לא תתהפך בעיקול
ברדיוס 3ק"מ?
10_Newton/e_10_2_009.html
סחרור אבן על חוט
נער העומד על גדר מסחרר במעגל אנכי אבן שמסתה mהקשורה בחוט .רדיוס מעגל הסיבוב הוא ,Rוהמתיחות המקסימלית שהחוט יכול
לשאת היא .T
.1בכמה סיבובים לדקה חייב הנער לסחרר את האבן כדי שהחוט יקרע?
.2נתון כי גובה מרכז המעגל מעל לקרקע הוא .hבאיזה מרחק אופקי מן מהנער תפגע האבן בקרקע?
10_Newton/e_10_2_012.html
כוחות מדומים
מסה מונחת על גבי מישור משופע בזוית ,המאיץ ימינה בתאוצה קבועה
.
מקדם החיכוך הקינטי בין המסה והמישור המשופע הוא
מהי תאוצת המסה ביחס למישור המשופע?
.
10_Newton/e_10_2_013.html
עבודה
מסה
נעה במישור ומיקומה בזמן נתון בביטוי
,
קבועים וחיוביים.
א .הראה/י כי צורת מסלולו של החלקיק היא אליפסה.
ב .הראה/י כי הכוח הפועל על החלקיק מופנה תמיד לכיוון מרכז האליפסה.
לנקודה
ג .מהי העבודה המבוצעת על החלקיק כאשר הוא נע מהנקודה
? הסבר/י!
ד .מהי העבודה במקרה הפרטי
?
10_Newton/e_10_2_014.html
תרגיל
א .איזה מהכוחות הבאים הם כוחות משמרים )רמז :לא מספיק לבדוק שהרוטור מתאפס(
ב.מהי העבודה הנעשית על כוחות אלה על-פני מסלול מעגלי סביב הראשית ,כנגד כיוון השעון?
10_Newton/e_10_2_015.html
עבודה ואנרגיה
שלוש מסות מחוברות כמתואר באיור .כל המשטחים חלקים והמסות נוגעות זו בזו .מסת החוט והגלגלת זניחות.
א .מה גודלו וכיוונו של הכח Fכדי שהמסה השניה תשאר במנוחה ביחס לראשונה?
ב .מה הן תאוצות המסות כאשר ?F=0
רמז :מהם הכוחות הפועלים על הגלגלת? מהו הכוח השקול הפועל על הגלגלת?
10_Newton/e_10_2_108.html
כוח חיכוך דינמי
חלקיק נע בקו ישר תחת פעולת כוח חיכוך דינאמי ,כלומר
של הזמן ושרטטו גרף של המהירות כפונקציה של הזמן.
כאשר kהוא קבוע ו v -זו מהירות .מצאו את מהירות כפונקציה
10_Newton/e_10_2_109.html
כוח משתנה
עבור המהירות
מצאו את הכוח.
10_Newton/e_10_2_201.html
תרגיל
חלקיק בעל מסה mנמצא במנוחה ב .x=0על החלקיק פועל כוח בכיוון ציר ה .xבזמן t=Tמפסיק הכח לפעול על החלקיק .נתון
כאשר F0ו Tקבועים.
מהם המיקום והמהירות של החלקיק כתלות בזמן?
10_Newton/e_10_2_202.html
תרגיל
מעלית שמסתה 150ק"ג מחוברת בכבל המסוגל לעמוד במתיחות של .5000Nתאוצתה המקסימלית של המעלית היא 2מ"ש .בהנחה כי
מסת אדם מבוגר היא 80ק"ג ,מה מספר האנשים המקסימלי היכולים להכנס למעלית?
10_Newton/e_10_2_203.html
תרגיל
נתונה מערכת של שני גופים .המסה הראשונה היא 15ק"ג והשניה 30ק"ג .מהו הכח Fהדרוש על מנת ש
א .המערכת תנועה במהירות קבועה?
ב .המערכת תאיץ ימינה ב 2מ"ש?
10_Newton/e_10_2_204.html
תרגיל
נתונה המערכת באיור .המע' מורכבת מגלגלות ומחבלים חסרי מסה .צירי הגלגלת חסרי חיכוך.
חשב את התאוצה של כל מסה.
10_Newton/e_10_2_205.html
תרגיל
ספינה נמצאת במערבולת המסתובבת בתדירות אחידה ) wהכוונה היא שכל אלמנט מים מסתובב בתדירות wסביב הראשית (.מהו הכוח
שעל המדחף להפעיל כך שהספינה תנוע בקו ישר בתאוצה אחידה )ביחס למים( ממרכז המערבולת? רמז :הגדר מע' צירים על
המערבולת ,ורשום את תנועת הספינה במע' צירים זאת.
10_Newton/e_10_2_206.html
תרגיל
תיל קשיח וחלק מונח במישור ) (x,yכך שקצה אחד שלו בראשית .צורת התיל מתוארת ע"י . (y(xמסובבים את התיל סביב ציר ה .y
מה צריכה להיות צורת התיל על-מנת שלחרוז בעל מסה mהמושחל עליו יהיו שתי נקודות שיווי משקל?
10_Newton/e_10_2_207.html
חוקי ניוטון
במערכת המתוארת באיור אין חיכוך והגלגלות והחוטים חסרי מסה.
נתון.M1=M2=5Kg :
א .חשבו את התאוצה של כל אחת מן המסות.
ב .חשבו את המתיחות בכל אחד מן החוטים.
10_Newton/e_10_3_001.html
ניוטון
מה המתיחות בחוטים?
10_Newton/e_10_3_002.html
ניוטון
נתונות שתי מסות
בתצורה הבאה:
א( מהו מקדם החיכוך כך ש m1תעלה במהירות קבועה?
ב( מהו מקדם החיכוך כך ש m1תרד במהירות קבועה?
10_Newton/e_10_3_003.html
ניוטון
נתון שחיין בבריכה השוחה במהירות של 5מטר לשנייה .במרחק מסוים מהדופן ,מפסיק השחיין לדחוף את עצמו במים וגולש עד לדופן.
מהירותו הסופית היא 0.4מטר לשנייה .באיזה מרחק מהדופן התחיל השחיין בגלישה?
.כוח גרר:
נתונים:
10_Newton/e_10_3_004.html
ניוטון
א( מהי מהירותה הסופית של טיפת גשם בהגיעה לקרקע ,בהנחה שטיפת גשם נופלת נפילה חופשית מענן בגובה 600מטר? האם ההנחה
סבירה?
ב( מהי מהירותה הסופית של טיפת גשם בהגיעה לקרקע ,כאשר לוקחים בחשבון את כוח הגרר שמפעיל עליה האוויר?
נתונים :כוח הגרר באוויר
,
10_Newton/e_10_3_005.html
חוקי ניוטון -תנועה מעגלית
א( באיזו מהירות ניתן לעבור סיבוב מעגלי בעל רדיוס של 50מטרים עם רכב ,אשר בינו לבין האספלט יש מקדם חיכוך של
?
ב( באיזו מהירות ניתן יהיה לעבור את הסיבוב אם הכביש יוגבה ב 15-מעלות?
10_Newton/e_10_3_006.html
חוקי ניוטון -תנועה מעגלית
האם מאבדים משקל כאשר עוברים מישראל לקו המשווה? כמה?
10_Newton/e_10_3_007.html
חוקי ניוטון -תנועה מעגלית
גוף קטן נע בתוך צינור מעגלי בעל רדיוס Rהנמצא במישור האופקי .נתון כי מקדם החיכוך הקינטי בין הגוף לצינור הוא
ההתחלתית של הגוף היא .לאחר איזה מרחק יעצר הגוף באופן מעשי?
.מהירותו
10_Newton/e_10_4_001.html
זבובים ומאזניים
זבוב עומד על קרקעיתה של צנצנת סגורה המוצבת על מאזניים רגישים הנמצאים במצב מאוזן .לפתע מתרומם הזבוב ,מרחף במקום
מספר שניות ושב ונוחת על קרקעית הצנצנת.
המשפטים הבאים מתארים את מצב כפות המאזניים לאורך התהליך שתואר לעיל .סמן/י את המשפט הנכון.
א( המאזניים יישארו מאוזנים כל הזמן.
ב( הכף השמאלית תרד כאשר הזבוב יעלה ,תישאר מאוזנת כאשר הזבוב ירחף ותעלה כשהזבוב ירד.
ג( הכף השמאלית תעלה כאשר הזבוב יעלה ,תישאר מאוזנת כאשר הזבוב ירחף ותרד' כשהזבוב ירד.
ד( הכף עם הזבוב תרד כל עוד הזבוב באוויר.
10_Newton/e_10_4_002.html
קונוס
הנמצא בתוך קונוס )המסתובב סביב צירו( בגובה
.זווית הפתיחה של הקונוס היא
נתון גוף
.
הוא
מצא/י את זמן המחזור המינימאלי והמקסימאלי של הקונוס כך שהגוף לא ייפול.
ומקדם החיכוך בין הגוף לקונוס
10_Newton/e_10_4_003.html
זריקת אבן
מבניין שגובהו
נזרקת אבן בכיוון אופקי במהירות של
.
רוח נגדית מאיטה את האבן בתאוצה קבועה וכתוצאה מכך פוגעת האבן ברגלי הבניין כמתואר באיור.
א( חשב/י את התאוצה האופקית של האבן.
ב( מהי צורת המסלול של האבן?
)רמז :בחירה נכונה של מערכת הציריםתפשט את הפתרון!(
10_Newton/e_10_4_004.html
חיכוך
.ברגע מסוים מתחיל
,המונחים זה על גבי זה כפי שמתואר באיור .בין שני הגופים יש מקדם חיכוך
נתונים שני גופים
עד אשר המהירות היחסית בניהם תתאפס.
ינוע על גבי
.מצא/י לאיזה מרחק הגוף
במהירות
לנוע על גבי
גוף
א( במערכת צירים אינרציאלית.
ב( במערכת צירים לא אינרציאלית.
10_Newton/e_10_4_005.html
שני גופים
כמתואר באיור.
נתון גוף בעל מסה המונח ע"ג טריז בעל מסה
א( מהי מהירות הטריז כפונקציה של הזמן?
? ,הסבר/י.
ב( מה יקרה בגבול ש-
במערכת הטריז?
ג( מהי מהירות המסה
ד( מהו מקדם החיכוך המינימלי בין המסה לטריז כך שלא תיווצר תנועה ?
10_Newton/e_10_4_006.html
חרוז מסתחרר
נתון חרוז בעל מסה
בה יתמקם החרוז.
המושחל על טבעת אנכית חסרת חיכוך בעלת רדיוס
,המסתובבת במהירות זוויתית
.מצא/י את הזווית
10_Newton/e_10_4_007.html
שאלה 2
וקשורה למישור
מונחת על גבי מסה
מונחת על מישור משופע חסר חיכוך בעל זוית )ראה/י שרטוט( .מסה
מסה
לאורך
נמצאת על גבי מסה
המשופע בחוט חסר מסה שכיוונו מקביל לאופק .בחר/י מערכת צירים לנוחיותך .הנח/י כי המסה
כל שלבי התנועה .נתונה תאוצת הכובד .
כאשר בין שתי המסות אין חיכוך:
?
א .מהי תאוצת המסה
:
כאשר קיים בין שתי המסות חיכוך סטטי
.
,ו-
כך שהמערכת תישאר במנוחה? בטא/י את תשובתך באמצעות
ב .מהו גודלה המקסימלי של
10_Newton/e_10_4_008.html
נפילה עם חיכוך
כדור נופל ממטוס שנע במהירות
בגובה
.
נתון כי חיכוך האויר הוא
הוא מקדם החיכוך.
כאשר
ונתונה תאוצת הכובד .
מצא את וקטור המיקום של הכדור?
10_Newton/e_10_4_009.html
נפילה עם חיכוך
.
כדור נופל ממגדל בגובה
נתון כי חיכוך האויר הוא
הוא מקדם החיכוך
.כאשר
.ונתונה תאוצת הכובד
מהו הגובה של הכדור כפונקציה של הזמן
10_Newton/e_10_4_010.html
מציאת מסילת תנועתו של הגוף דרך שדה כוח נתון
.
הגוף נכנס לשדה במהירות של
גוף נע דרך שדה כוח שמשוואתו היא
.מצא את וקטור המקום של הגוף
10_Newton/e_10_4_011.html
תנועה יחסית
קרונית נעה בתאוצה קבועה .aמסה Mהקשורה בחוט לגג הפנימי של הקרונית יוצרת זווית של
aו.g
עם האנך .בטא את
באמצעות M
10_Newton/e_10_5_041.html
חוקי ניוטון
אדם השוקל 700ניוטון מושך את עצמו כלפי מעלה בעזרת מערכת גלגלות כמוראה באיור .מסת המשטח .200Nמסות הגלגלות
והחבלים זניחות .הגלגלות חסרות חיכוך.
א.באיזה כח עליו למשוך את החבל בכדי שיעלה במהירות קבועה?
ב.באיזה כח על בן-אדם על הקרקע למשוך את החבל על מנת שיעלה במהירות קבועה?
10_Newton/e_10_5_042.html
חוקי ניוטון
דוחפים קוביה בעלת מסה mבכיוון האופקי על משטח בעל מקדם חיכוך סטטי msומקדם חיכוך דינמי .mkנתון כי . ms0.5= mk
ב t=0הקוביה נעה במהירות קבועה.
?
א.מהו
.באיזה מהירות ותאוצה הקוביה תנוע?
ב.בשלב כלשהו עוצרים את הקוביה ומפעילים עליה כוח
ג.מהו הכוח המינימלי שיש להפעיל על הקוביה בכדי שתתחיל לנוע?
10_Newton/e_10_5_043.html
חוקי ניוטון
התמונה מראה חתך של כביש שחצוב בהר .הקו A’Aמסמל מישור עליו החלקה היא אפשרית .סלע Bנמצא ישירות מעל הכביש
,זווית ההטיה של
ומופרד משאר ההר ע" י סדק גדול ,כך שרק כוח החיכוך מונע מהסלע להחליק .מסת הסלע היא
השיפוע היא 24מעלות ,ומקדם החיכוך הסטטי הוא .0.63הראה/י כי
א.הסלע לא יחליק.
ב.אם מים קופאים בסדק ומרחיבים אותו כך שהם מפעילים כוח Fעל הסלע )במקביל למישור ,(A’Aמהו הערך המינימלי של F
שיגרום לסלע להחליק?
10_Newton/e_10_5_044.html
חוקי ניוטון
בדיאגרמה ל A -משקל של 44Nול B -משקל של .22Nמקדם החיכוך הסטטי בין Aלשולחן הוא 0.2ומקדם החיכוך הדינמי בין A
לשולחן הוא .0.15
א .מהו המשקל המינימלי של Cעל-מנת ש Aלא יחליק?
ב.נניח כי בבת אחת מרימים את .Cמה תהיה תאוצת ? A
10_Newton/e_10_5_071.html
חוקי ניוטון
גוף שמסתו mמתחיל להחליק ממנוחה בשיא הגובה של מסילה חצי מעגלית חלקה שרדיוסה R=1מטר.
א .מצאו ביטוי לכוח הנורמלי Nכפונקציה של הזווית .jבאיזו זווית הגוף יתנתק מהמסילה ?
ב .מהי התאוצה הזוויתית של הגוף ברגע הניתוק מהמסילה ?
10_Newton/e_10_5_072.html
חוקי ניוטון
ילד שמשקלו 40קג" כ הולך על קורה שאורכה 2מטרים ומסתה 20קג" כ .הקורה תלויה בשני חוטים .חוזק החוט הימני לקריעה הוא
350ניוטון וחוזק החוט השמאלי הוא 400ניוטון .מהו התחום בו יכול הילד לשהות מבלי שהחוט יקרע ?
10_Newton/e_10_5_073.html
חוקי ניוטון
מוט שמסתו mואורכו Lמחובר בעזרת חוט לקיר לא חלק כמוראה .נתון . b=700מה צריך להיות מקדם החיכוך כדי שהמקל לא
יחליק )תשובה מספרית!(?
10_Newton/e_10_5_074.html
חוקי ניוטון
גוף שמסתו 5ק" ג תלוי על מוט אחיד הנטוי בזווית 600מהקיר .המוט ,שמסתו ,mמוחזק ע" י חבל היוצר עם הקיר זווית בת .450
א.מהי המתיחות Tבחבל זה ,אם ידוע ש? m=2kg-
ב.הראו שכאשר ,mà 0הכוח שמפעיל המוט על נקודת חיבור החוטים מכוון לאורך המוט) .הערה :כוח זה מאפס את השקול של TוT -
'(.
10_Newton/e_10_5_075.html
חוקי ניוטון
חוט )חסר מסה ועובי( מלופף על דיסקה אחידה שמסתה 100גרם .מחזיקים בקצה החוט ועוזבים .מהי התאוצה הזוויתית של הדיסקה ?
תוך כמה זמן תיסתובב הדיסקה 10רדיאנים )כמה סיבובים זה ?( ,אם התחילה ממנוחה ?
10_Newton/e_10_5_076.html
חוקי ניוטון
נתונה המערכת הבאה .האלמנטים היחידים המתחככים הם החוט והגלגלת התחתונה .גלגלת זו מתגלגלת ללא החלקה .נתון m1=1 kg, :
.m2=2 kg , R=10cm, m3=3 kgמהי תאוצת ?m1
10_Newton/e_10_5_077.html
חוקי ניוטון
קורה שמסתה m=10kgואורכה L=0.5 mמוחזקת לקיר ע" י ציר משחררים את הקורה ממנוחה.
א.מהו מומנט האינרציה של הקורה יחסית לציר ?
ב.מצאו ביטוי לתאוצה הזוויתית כפונקציה של הזווית .b
ג.מהן התאוצות המשיקיות aA, aBבנקודות Aו B-כאשר ? b=500נתון ? OA=0.15m, OB=0.4m :
10_Newton/e_10_5_078.html
חוקי ניוטון
.שני בולים מחוברים בחוט שמסתו זניחה
.בול א מונח על שולחן עם מקדם חיכוך 0.4כשכוח חיצוני פועל על המערכת היא נמצאת בש.מ
מה גודלו וכיוונו של כוח החיכוך הפועל על הבול כאשר גודלו של הכוח החיצוני הוא 250ניטון )1
מהו גודלו המקסימלי של הכוח החיצוני כך שהמערכת תשאר עדיין במנוחה )2
הכוח חדל לפעול ,באיזו תאוצה ינוע הבול )3
10_Newton/e_10_5_079.html
חוקי ניוטון
גוף שמסתו Mמונח על מישור משופע חלק הנטוי בזווית .
גוף שמסתו mמונח עליו כשהוא קשור אליו ע"י חוט העובר סביב גלגלת בעלת מסה זניחה
מקדם החיכוך הקינטי בין הגופים הוא
משחררים את המערכת ממנוחה והיא מתחילה להחליק
בטא את תשובותיך בעזרת m ,M, g , ,
(1שרטט את תרשימי הכוחות עבור כל אחד מהגופים
(2חשב את תאוצת הגוף
(3כמה זמן יחליק הגוף mעל Mעד שקצותיהם הימניים יתלכדו,
בהנחה שברגע שחרור המערכת הגופים נמצאים במרחק Lזה מזה.
10_Newton/e_10_5_080.html
תנועה מעגלית
כדור קטן שמסתו mקשור לקצהו של חוט שאורכו .l
קצהו השני של החוט מחובר אל ציר סיבוב אוקפי חלק העובר בגובה 3l
מעל הרצפה .אוחזים בכדור כאשר החוט מתוח באורך lוהכדור נמצא אנכית מעל ציר הסיבוב.
במצב זה מעניקים לכדור מהירות אופקית V0על מנת שהכדור יבצע תנועה במעגל זקוף.
נתונים m,l,g
א(מה המהירות המינימלית V0שהכדור אכן יבצע תנועה מעגלית זקופה
.
ב(מענקים לכדור מהירות התחלתית
בהנחה שהחוט נקרע ברגע שמתיחותו עולה על
ג( מה מהירות הכדור ברגע שהחוט נקרע?
מצא את
ד( תוך כמה זמן מרגע קריעת החוט יפגע הכדור ברצפה .בחלק זה הנח
בה נמצא הכדור ברגע שהחוט נקרע.
ו-
.
10_Newton/e_10_5_081.html
תנועה מעגלית
מסה נקודתית מתחילה את תנועתה ממצב מנוחה מפסגת משטח כדורי בעל רדיוס R
המשטח חלק וקבוע
א(חשבו את האנרגיה הקינטית של המסה כפונקציה של הזווית
ב(חשבו את התאוצה הרדיאלית והמשיקית כפונקציה של הזווית
ג( באיזה זווית תשתחרר המסה מהמשטח הכדורי
10_Newton/e_10_5_082.html
תקליט מסתובב בקצב של 33סיבובים בדקה
א(מהי תדירות הסיבוב של התקליט?
ב(מהו זמן המחזור של הסיבוב?
ג( תוך כמה זמן מתקדמת נקודה על התקליט לזווית של 90מעלות?
10_Newton/e_10_5_083.html
תנועה מעגלית חוקי ניוטון
בול קטן שמסתו mמחליק על מסילה המסתיימת במסילה מעגלית אנכית ,כמתואר בציור .המסילה כולה נטולת חיכוך.
א( מהי המהירות של הבול )גודל וכיוון( בהגיעו לנקודה ?T
ב(מהי התאוצה הרדיאלית והתאוצה המשיקית בנקודה ?T
ג( מהו גודל הכוח השקול הפועל על הבול בנקודה ?T
תפעיל עליו המסילה כוח נורמלי השווהQ ד( באיזה גובה מעל תחתית המסילה המעגלית יש לשחרר את הבול כדי שבהגיעו אל הנקודה
?למשקלו
10_Newton/e_10_8_010.html
Friction
Block m1 in the figure below has a mass of 4.20 kg and block m2 has a mass of 2.30 kg. The coefficient of
kinetic friction between m2 and the horizontal plane is 0.47. The inclined plane is frictionless. Find (a) the
acceleration of the blocks and (b) the tension in the string.
10_Newton/e_10_8_026.html
Circular motion
A car moves at a constant speed on a straight but hilly road. One section has a crest (peak) and dip of the same
250-m radius, as shown in the figure below. (a) As the car passes over the crest, the normal force on the car is
one-half the 16-kN weight of the car. What will be the normal force on the car as it passes through the bottom
of the dip? (b) What is the greatest speed at which the car can move without leaving the road at the top of the
hill? (c) Moving at the speed found in (b), what will be the normal force on the car as it moves through the
bottom of the dip?
10_Newton/e_10_8_040.html
(חיכוך )בעיה בתלת מימד
. הארגז מתחכך עם שתי הצלעות.ארגז בצורת קוביה מחליק בתוך תעלה משופעת המוצגת בציור השמאלי וחתכה מוצג בציור הימני
.
חשבו את תאוצת הארגז באמצעות.
מקדם החיכוך הקינטי בין הגוף והצלעות הוא
10_Newton/e_10_8_041.html
חוקי ניוטון
:נתונה המערכת הבאה
T1, T2, T3 י את המתיחויות/מצא
10_Newton/e_10_8_042.html
חוקי ניוטון
קופסא מונחת ע" ג רצפת קרון הנע במהירות .[m/sec] 40מקדם החיכוך הסטטי בין הקופסא לרצפת הקרון הוא .ms = 0.3אם הקרון
מתחיל לבלום בתאוצה קבועה עד לעצירה מוחלטת ,מהו המרחק המינימלי שעליו לעבור עד שייעצר ע" מ שהקופסא לא תחליק ?
10_Newton/e_10_8_043.html
חוקי ניוטון
מעלית שמסתה [kg] 150מחוברת בכבל המסוגל לעמוד במתיחות של עד .[N] 5000תאוצתה המקסימלית של המעלית היא ] 2
.[m/secבהנחה כי מסתו של אדם בוגר היא [kg] 80מה מספר האנשים המקסימלי שיכולים לעלות במעלית בבטחה ? מה היה מספר
האנשים אילו היתה המעלית יורדת ?
10_Newton/e_10_8_044.html
חוקי ניוטון
גוף שמסתו [kg] 5תלוי על מוט הנטוי בזווית של 60oמהקיר .המוט מוחזק על ידי חבל היוצר עם הקיר זווית של )45oראה/י ציור(.
מהי המתיחות בחוט ?
10_Newton/e_10_8_045.html
חוקי ניוטון
נתונה מערכת של שני גופים ) ראה/י ציור( .הגלגלת והמשטחים חסרי חיכוך .נתון כי ] m1 = 15 [kgו .m2 = 30 [kg ] -מה צריך
להיות הכוח fכדי ש: -
א .המערכת תנוע במהירות קבועה.
ב .המערכת תאיץ בתאוצה קבועה של [m/sec2] 2שמאלה.
10_Newton/e_10_8_046.html
חוקי ניוטון
מכונית משולשת מאיצה שמאלה בתאוצה של .[m/sec2] 10מזוודה שמסתה [kg] 20נשכחה על " גג" המכונית )הצד המשופע(.
א .האם תיפול המזוודה מהמכונית במהלך הנסיעה ,כלומר תנוע כלפי מטה ביחס לגג ?
רמז :יש לחשב מהו הכוח הנורמלי
ב.יש לחשב את התאוצה של המזוודה
ג.יש לשאול מה כיוון תאוצת המזוודה ביחס למכונית
10_Newton/e_10_8_051.html
חוקי ניוטון
ר' ,סטודנט שמסתו [kg] 70נסע בחופשת הפסח לעשות סקי מים .לאחר שלבש את המגלשיים ותפס את החבל בחוזקה סירת המרוץ
האיצה בתאוצה קבועה של .[a = 5 [m/sec2ידוע כי מקדם החיכוך הקינטי בין המגלשיים למים הוא 0.2ומקדם החיכוך הקינטי בין
הסירה ,שמסתה ,[kg] 800למים הוא .0.35
א.מהי המתיחות בחבל ?
ב .מהו הכוח הכולל שמפעיל המנוע על הסירה על מנת שתאיץ בתאוצה זו ?
ג .לאחר זמן מה התחיל זרם חזק במהירות של [m/sec] 3בכיוון הפוך לכיוון תנועת הסירה והגולש ,מהו הכוח שצריך להפעיל המנוע
ע" מ לאפשר את התנועה המואצת בתנאים אלה ?
ד .לאחר הפלגה קצרה התעייף הקייטן ועלה לסירה ,אך אויה ,מנוע הסירה אינו פועל והסירה החלה להיסחף עם הזרם )כלומר ,מהירות
הסירה ביחס למים היא .(0ר' מיד התנדב לפתור את הבעיה ואחז במשוטים .אם ידוע כי מקדם החיכוך הסטטי בין הסירה למים הוא 0.5
מהו הכוח המינימלי שעליו להפעיל ע" מ להאיץ את הסירה.
10_Newton/e_10_8_052.html
חוקי ניוטון
כדי לממן את חופשת הסקי נאלץ ר' )שמסתו עלתה ל ([kg] 72 -לעבוד בניקוי חלונות בבניינים גבוהים .במהלך עבודתו עמד על לוח
שמסתו [kg] 40המחובר לגלגלת חסרת חיכוך ומסה באופן הבא:
כדי לעלות ולרדת צריך ר' למשוך בחבל.
א.איזה כוח צריך ר' להפעיל על החבל כדי לעלות במהירות קבועה ?
ב.מהו הכוח אותו הוא מפעיל על הלוח במקרה זה ?
ג.מהו הכוח אותו הוא מפעיל על מנת לרדת בתאצה קבועה של ? [m/sec] 1
ד.לאחר שהתעייף החליט ר' לייעל את המערכת והוסיף גלגלת נוספת
פתור/י את שלושת הסעיפים א,ב,ג עבור המערכת החדשה.
10_Newton/e_10_8_053.html
חוקי ניוטון
כושר ההפרדה של מכשיר הצנטריפוגה )מכשיר להפרדת מסות( מוגדר כתאוצה הרדיאלית )צנטריפטלית( בסיבוב ,ביחידות של .g
נתון מכשיר צנטריפוגה המסתובב בתדירות של ] f = 50 [Hzורדיוסו ] .R = 15 [cmמהו כושר ההפרדה של המכשיר ?
10_Newton/e_10_8_054.html
חוקי ניוטון
מכונית נוסעת בכביש מעגלי שרדיוסו ,[m] 100המוגבה בזווית של .10°מקדם החיכוך הסטטי בין המכונית לכביש הוא .0.3
מהי המהירות המשיקית המקסימלית האפשרית כך שהמכונית תמשיך במסלול המעגלי ? מה יקרה אם תעבור המכונית מהירות זו ?
10_Newton/e_10_8_055.html
חוקי ניוטון
מסובבים דלי מים קשור בחבל שאורכו ] R = 1.2 [mבצורה אנכית .מהי המהירות המינימלית של הדלי בנקודת הפסגה ע" מ שהמים
לא יישפכו ?
10_Newton/e_10_8_061.html
חוקי ניוטון
נתונות שתי מסות הקשורות בחבלים על פי הציור .מסה Bמשקלה [N] 711ומקדם החיכוך הסטטי בינה ובין השולחן הוא .µ s = 0.25
הנח/י כי החבל בין מסה Bוהקשר מתוח אופקית .מצא את המסה המקסימלית של Aכך שהמערכת תישאר במנוחה .מה יקרה אם מסה
Aתהיה כבידה יותר ?
10_Newton/e_10_8_062.html
חוקי ניוטון
בציור ישנן שלוש משקולות.A, B, C ,
נתון כי מסתן של המשקולות Aו B -הן ] MA= 4 [kgו Mb = 2 [kg] -וכי מקדמי החיכוך הסטטי והקינטי בין משקולת Aלשולחן
הם µ s = 0.2ו.µ k = 0.15 -
א.מה המסה המינימלית של משקולת Cעל מנת שהמערכת תישאר במנוחה ?
ב .מרימים בפתאומיות את משקולת ,Cמה תהיה תאוצתה של משקולת ? A
10_Newton/e_10_8_063.html
חוקי ניוטון
לכבוד האביב המלבב קנה ר' לאימו שעון קיר עם שני מחוגים ,שעות ודקות ,שרדיוסם ] . Rh = 15 [cm], Rm = 30 [cm
א .מהי המהירות הזוויתית של המחוגים ? מהי המהירות המשיקית של קצות המחוגים ?
ב.ר' סיים לכוון את השעון בשעה , 14:50מה הזווית שיעבור מחוג הדקות עד שישיג את מחוג השעות ?
ג.מה המרחק שיעבור קצה מחוג הדקות מנקודת המפגש עד השעה ? 15:45
10_Newton/e_10_8_064.html
חוקי ניוטון
דיסקה מחליקה ע" ג שולחן ללא חיכוך .הדיסקה מחוברת למסה התלויה מתחת למרכז דרך חור בשולחן .מה צריכה להיות המהירות
)זוויתית ומשיקית( של הדיסקה על מנת שהמסה תישאר במנוחה אם אורך החבל מהחור לדיסקה הוא ? [cm] 25בכמה תשתנה
המהירות אם מרחק זה יתקצר ל? [cm] 15 -
10_Newton/e_10_8_065.html
חוקי ניוטון
כדור שמסתו ] m = 1.4 [kgמחובר בעזרת שני מיתרים למוט המסתובב סביב צירו .ידוע כי המתיחות במיתר העליון היא ] Tu = 35
] Nוכי שני המיתרים שאורכם [m] 1.7מתוחים ,וכי המרחק בין נקודת הקשירה של המיתרים על המוט היא [m] 1.7גם כן .חשב/י
את:
א .המתיחות במיתר התחתון.
ב.הכוח הפועל על הכדור.
ג.מהירות הכדור )משיקית וזוויתית(.
10_Newton/e_10_8_066.html
Newton Laws
A 5.5-kg block is initially at rest on a frictionless horizontal surface.
It is pulled with a constant horizontal force of 3.8 N.
(a) What is its acceleration?
(b) How long must it be pulled before its speed is 5.2 m/s?
(c) How far does it move in this time?
10_Newton/e_10_8_067.html
Newton Laws
An electron travels in a straight line from the cathode of a vacuum tube to its anode, which is 1.5 cm away.
It starts with zero speed and reaches the anode with a speed of 5.8 X 106 m/s. Assume constant acceleration
and compute the force on the electron.
This force is electrical in origin. The electron's mass is 9.11 X 10-31 kg.
10_Newton/e_10_8_068.html
Newton Laws
A car traveling at 53 km/h hits a bridge support. A passenger in the car moves forward a distance of 65 cm
(with respect to the road) while being brought to rest by an inflated air bag.
What force (assumed constant) acts on the passen¬ger's upper torso, which has a mass of 39 kg?
10_Newton/e_10_8_069.html
Newton Laws
A certain force gives object m1 an acceleration of 12.0 m/s2. The same force gives object m2 an acceleration of
3.30 m/s2.
What acceleration would the force give to an object whose mass is
(a) the difference between m1 and m2 and
(b) the sum of m1 and m2 ?
10_Newton/e_10_8_070.html
Newton Laws
Two blocks, with masses m1 = 4.6 kg and m2 = 3.8 kg, are connected by a light spring on a horizontal
frictionless table. At a certain instant, when m2 has an acceleration a2 = 2.6 m/s2,
(a) what is the force on m2 and
(b) what is the acceleration of m1 ?
10_Newton/e_10_8_071.html
Newton Laws
A space trave1er whose mass is 75.0 kg leaves Earth. Compute his weight
(a) on Earth,
(b) on Mars, where g = 3.72 m/s2, and
(c) in interplanetary space.
(d) What is his mass at each of these locations?
10_Newton/e_10_8_072.html
Newton Laws
A 12,000-kg airplane is in level flight at a speed of 870 km/h.
What is the upward-directed lift force exerted by the air on the airplane?
10_Newton/e_10_8_073.html
Newton Laws
A jet plane starts from rest on the runway and accelerates for takeoff at 2.30 m/s2 (= 7.55 ft/s2).
It has two jet engines, each of which exerts a thrust of 1.40 X 105 N (= 15.7 tons). What is the weight of the
plane?
10_Newton/e_10_8_074.html
Newton Laws
(a) Two l0-lb weights are attached to a spring scale as shown in the figure below. What is the reading of the
scale?
(b) A single l0-lb weight is attached to a spring scale which itself is at¬tached to a wall, as shown below.
What is the reading of the scale? (Ignore the weight of the scale.)
10_Newton/e_10_8_075.html
Newton Laws
A car moving initially at a speed of 50 mi/h (~80 km/h) and weighing 3000 Ib (~13,000 N) is brought to a stop
in a distance of 200 ft (~61 m). Find
(a) the braking force and
(b) the time required to stop.
Assuming the same braking force, find
(c) the distance and
(d) the time required to stop if the car were going 25 mi/h (~40 km/h) initially.
10_Newton/e_10_8_076.html
Newton Laws
An object is hung from a spring scale attached to the ceiling of an elevator.
The scale reads 65 N when the elevator is standing still.
(a) What is the reading when the elevator is moving upward with a constant speed of 7.6 m/s?
(b) What is the reading of the scale when the elevator is moving upward with a speed of 7.6 m/s and
decelerating at 2.4 m/s2 ?
10_Newton/e_10_8_077.html
Newton Laws
A 77-kg person is parachuting and experiencing a downward acceleration of 2.5 m/s2 shortly after opening the
parachute.
The mass of the parachute is 5.2 kg.
(a) Find the upward force exerted on the parachute by the air.
(b) Calculate the downward force exerted by the person on the parachute.
10_Newton/e_10_8_078.html
Newton Laws
A l5,000-kg helicopter is lifting a 4500-kg car with an up¬ward acceleration of 1.4 m/s2. Calculate
(a) the vertical force the air exerts on the helicopter blades and
(b) the tension in the upper supporting cable. See the picture below.
10_Newton/e_10_8_079.html
Newton Laws
A l400-kg jet engine (below) is fastened to the fuselage of a passenger jet by just three bolts (this is the usual
practice). Assume that each bolt supports one-third of the load.
(a) Calculate the force on each bolt as the plane waits in line for clearance to take off.
(b) During flight, the plane encounters turbulence, which suddenly imparts an upward vertical acceleration of
2.60 m/s2 to the plane.
Calculate the force on each bolt now. Why are only three bolts used?
10_Newton/e_10_8_080.html
Newton Laws
A child's toy consists of three cars that are pulled in tandem on small frictionless rollers as shown in the figure
below.
The cars have masses m1 = 3.1 kg, m2= 2.4 kg, and m3 = 1.2 kg. If they are pulled to the right with a
horizontal force P = 6.5 N, find
(a) the acceleration of the system,
(b) the force exerted by the second car on the third car, and
(c) the force exerted by the first car on the second car.
10_Newton/e_10_8_081.html
Newton Laws
Two blocks are in contact on a frictionless table, as shown below. A horizontal force is applied to one block, as
shown below.
(a) If m1 = 2.3 kg, m2 = 1.2 kg, and F = 3.2 N, find the force of contact between the two blocks.
(b) Show that if the same force F is applied to m2 rather than to m1, the force of contact between the blocks is
2.1 N, which is not the same value de¬rived in (a). Explain.
10_Newton/e_10_8_082.html
A body with mass m is acted on by two forces F1 and F2, as shown in the figure below.
If m = 5.2 kg, F1 = 3.7 N, and F2 = 4.3 N, find the vector acceleration of the body.
10_Newton/e_10_8_083.html
A 5.1-kg block is pulled along a frictionless floor by a cord that exerts a force P = 12 N at an angle = 25°
above the horizontal, as shown in the figure below.
(a) What is the acceleration of the block?
(b) The force P is slowly increased. What is the value of P just before the block is lifted off the floor?
(c) What is the acceleration of the block just before it is lifted off the floor?
10_Newton/e_10_8_084.html
A worker drags a crate across a factory floor by pulling on a rope tied to the crate.
The rope, which is inclined at 38.0° above the horizontal, exerts a force of 450 N on the crate.
The floor exerts a horizontal resistive force of 125 N, as shown in the figure below.
Calculate the acceleration of the crate
(a) if its mass is 96.0 kg, and
(b) if its weight is 96.0 N.
10_Newton/e_10_8_085.html
A 1200-kg car is being towed up an 18° incline by means of a rope attached to the rear of a truck. The rope
makes an angle of 27° with the incline.
What is the greatest distance that the car can be towed in the first 7.5 s starting from rest if the rope has a
breaking strength of 4.6 kN?
Ignore all resistive forces on the car. See the figure below:
10_Newton/e_10_8_086.html
A 110-kg crate is pushed at constant speed up a frictionless 34° ramp, as shown in the figure below.
What horizontal force F is required? (Hint: Resolve forces into components parallel to the ramp.)
10_Newton/e_10_8_087.html
An elevator weighing 6200 lb is pulled upward by a cable with an acceleration of 3.8 ft/s2.
(a) What is the tension in the cable?
(b) What is the tension when the elevator is accelerating downward at 3.8 ft/s2 but is still moving upward?
10_Newton/e_10_8_088.html
A lamp hangs vertically from a cord in a descending elevator.
The elevator has a deceleration of 2.4 m/s2 before coming to a stop.
(a) If the tension in the cord is 89 N, what is the mass of the lamp?
(b) What is tension in the cord when the elevator ascends (goes up) with an upward acceleration of 2.4 m/s2?
10_Newton/e_10_8_089.html
An 11-kg monkey is climbing a massless rope attached to a 15-kg log (piece of wood) over a frictionless tree
limb.
(a) With what mini¬mum acceleration must the monkey climb up the rope so that it can raise the 15-kg log off
the ground?
If, after the log has been raised off the ground, the monkey stops climbing and hangs on to the rope, what will
now be
(b) the monkey's acceleration and
(c) the tension in the rope?
10_Newton/e_10_8_090.html
The figure below shows a section of an alpine cable-car system. The maximum permitted mass of each car with
occupants is 2800 kg.
The cars, riding on a support cable, are pulled by a second cable attached to each pylon (support column).
What is the difference in tension between adjacent sections of pull cable if the cars are accelerated up at a 35°
incline at 0.81 m/s2, as shown below?
10_Newton/e_10_8_091.html
The man in the figure below weighs 180 lb; the platform and at¬tached frictionless pulley weigh a total of 43
lb. Ignore the weight of the rope.
With what force must the man pull up on the rope in order to lift himself and the platform upward at 1.2 ft/s2?
10_Newton/e_10_8_092.html
Block B in the figure below weighs 712 N. The coefficient of static friction between block B and the table is
0.25.
Find the maximum weight of block A for which block B will remain at rest.
10_Newton/e_10_8_093.html
Block m1 in the figure below has a mass of 4.20 kg and block m2 has a mass of 2.30 kg.
The coefficient of kinetic friction between m2 and the horizontal plane is 0.47.
The inclined plane is frictionless. Find
(a) the acceleration of the blocks and
(b) the tension in the string.
10_Newton/e_10_8_094.html
In the figure below, object B weighs 94.0 lb and object A weighs 29.0 lb.
Between object B and the plane the coefficient of sta¬tic friction is 0.56 and the coefficient of kinetic friction
is 0.25.
(a) Find the acceleration of the system if B is initially at rest.
(b) Find the acceleration if B is moving up the plane.
(c) What is the acceleration if B is moving down the plane? The plane is inclined by 42.0°.
10_Newton/e_10_8_095.html
During an Olympic bobsled run, a European team takes a turn of radius 25 ft at a speed of 60 mi/h.
What acceleration do the riders experience
(a) in ft/s2 and
(b) in units of g?
10_Newton/e_10_8_096.html
A 2400-lb (= 10.7-kN) car traveling at 30 mi/h (= 13.4 m/s) attempts to round an unbanked curve with a radius
of 200 ft (= 61.0 m).
(a) What force of friction is required to keep the car on its circular path?
(b) What minimum coefficient of static friction between the tires and road is required?
10_Newton/e_10_8_097.html
A circular curve of highway is designed for traffic moving at 60 km/h (= 37 mi/h).
(a) If the radius of .the curve is 150 m (= 490 ft), what is the correct angle of banking of the road?
(b) If the curve were not banked, what would be the minimum coefficient of friction between tires and road that
would keep traffic from skidding (slipping) at this speed?
10_Newton/e_10_8_098.html
A conical pendulum is formed by attaching a 53-g pebble to a l.4-m string.
The pebble swings around in a circle of radius 25 cm.
(a) What is the speed of the pebble?
(b) What is its acceleration?
(c) What is the tension in the string?
10_Newton/e_10_8_099.html
A banked circular highway curve is designed for traffic moving at 95 km/h. The radius of the curve is 210 m.
Traffic is moving along the highway at 52 km/h on a stormy day.
(a) What is the minimum coefficient of friction between tires and road that will allow cars to turn without
sliding?
(b) With this value of the coefficient of friction, what is the greatest speed at which the cars can turn without
sliding?
10_Newton/e_10_8_100.html
A particle of mass m is subjected to a net force F(t) given by F(t)=Fo(1-t/T)i; that is, F(t) equals Fo at t = 0 and
decreases linearly to zero in time T. The particle passes the origin x = 0 with velocity voi. Show that at the
instant t = T that F(t) vanishes, the speed v and distance x traveled are given by v(T) = vo + aoT/2, and x(T) =
voT + aoT^2/3, where ao = Fo/m is the initial acceleration.
10_Newton/e_10_8_101.html
A horizontal force F of 12 lb pushes a block weighing 5.0 lb against a vertical wall as shown in the figure
below.
The coefficient of static friction between the wall and the block is 0.60 and the coeffi¬cient of kinetic friction is
0.40. Assume the block is not mov¬ing initially.
(a) Will the block start moving?
(b) What is the force exerted on the block by the wall?
10_Newton/e_10_8_102.html
7.96-kg block rests on a plane inclined at 22.0° to the horizontal, as shown in the figure below.
The coefficient of static friction is 0.25, while the coefficient of kinetic friction is 0.15.
(a) What is the minimum force F, parallel to the plane, that will prevent the block from slipping down the
plane?
(b) What is the minimum force F that will start the block moving up the plane?
(c) What force F is required to move the block up the plane at constant velocity?
10_Newton/e_10_8_103.html
The two blocks, m = 16 kg and M = 88 kg, shown in the figure below are free to move.
The coefficient of static friction between the blocks is 0.38, but the surface beneath M is frictionless.
What is the minimum horizontal force F required to hold m against M?
10_Newton/e_10_8_104.html
A massless rope is tossed over a wooden dowel (cylinder) of radius r in order to lift a heavy object of weight
W off of the floor, as shown in the figure below.
The coefficient of sliding friction between the rope and the dowel is mu. Show that the minimum downward
pull on the rope necessary to lift the object is Fdown=Wexp(pi mu).
(Hint: This problem requires techniques from integral calculus.)
10_Newton/e_10_8_105.html
A 4.40-kg block is put on top of a 5.50-kg block. In order to cause the top block to slip on the bottom one, held
fixed, a horizontal force of 12.0 N must be applied to the top block.
The assembly of blocks is now placed on a horizontal, frictionless table, as shown below Find
(a) the maximum horizon¬tal force F that can be applied to the lower block so that the blocks will move
together,
(b) the resulting acceleration of the blocks, and
(c) the coefficient of static friction between the blocks.
10_Newton/e_10_8_106.html
You are driving a car at a speed of 85 km/h when you notice a barrier across the road 62 m ahead.
(a) What is the minimum coefficient of static friction between tires and road that will allow you to stop without
striking the barrier?
(b) Suppose that you are driving at 85 km/h on a large empty parking lot. What is the minimum coefficient of
static friction that would allow you to turn the car in a
62-m radius circle and, in this way, avoid collision with a wall 62 m ahead?
10_Newton/e_10_8_107.html
A car moves at a constant speed on a straight but hilly road. One section has a crest (peak) and dip of the same
250-m radius, as shown in the figure below.
(a) As the car passes over the crest, the normal force on the car is one-half the 16-kN weight of the car. What
will be the normal force on the car as it passes through the bottom of the dip?
(b) What is the greatest speed at which the car can move without leaving the road at the top of the hill?
(c) Moving at the speed found in (b), what will be the normal force on the car as it moves through the bottom
of the dip?
10_Newton/e_10_8_108.html
A 1.34-kg ball is attached to a rigid vertical rod by means of two massless strings each 1.70 m long. The strings
are attached to the rod at points 1.70 m apart.
The system is rotating about the axis of the rod, both strings being taut and forming an equilateral triangle with
the rod, as shown below.
The tension in the upper string is 35.0 N.
(a) Find the tension in the lower string.
(b) Calculate the net force on the ball at the instant shown in the figure.
(c) What is the speed of the ball?
10_Newton/e_10_8_109.html
A very small cube of mass m is placed on the inside of a funnel (see figure below) rotating about a vertical axis
at a constant rate of w revolutions per second.
The wall of the funnel makes an angle theta with the horizontal. The coefficient of static friction between cube
and funnel is mu and the center of the cube is at a distance r from the axis of rotation.
Find the
(a) largest and
(b) smallest values of w for which the cube will not move with respect to the funnel.
13_Energy_momentum/e_13_1_011.html
conservative forces
For each of the forces given below check whether it is conservative and find the potential energy, if possible:
a)
,
,
b)
,
,
13_Energy_momentum/e_13_1_012.html
Potential energy, conservation laws
Potential energy is given by
13_Energy_momentum/e_13_1_013.html
. At what
aparticle is in equilibrium ?
period of the bound motion
Potential energy is given by
the particle with the energy
(one-dimensional motion). Find the period of the bound motion of
.
13_Energy_momentum/e_13_1_014.html
Potential energy, conservation laws
Force is given by
,
(cylindrical coordinates). Is the force conservative ? If yes,
find the potential. What is conserved in this force ?
13_Energy_momentum/e_13_1_015.html
Potential energy, conservation laws
Potential energy is given in polar coordinates by
conserved ? Find the torque at
.
. Find the force. Is angular momentum
13_Energy_momentum/e_13_1_016.html
Potential energy, conservation laws
A particle orbit is
. Find the central force.
13_Energy_momentum/e_13_1_017.html
Potential energy, conservation laws
A bead (mass ) is moving on a circularly shaped wire(
) without friction and is connected to the
two points,
and
, with identical springs (spring constant ) of initially zero
length (so that
where is the length of the spring). a) Write down the force vectors. b) Derive the
potential energy (if the forces are conservative). c) Find the velocity as a function of angle
(for a given
energy). c) Find the angular momentum relative to the coordinate origin as a function of .
13_Energy_momentum/e_13_1_018.html
Potential energy, conservation laws
A bead (mass ) is moving on an elliptically shaped (
) wire without friction. The bead is
attracted to the focus
by the force inversely proportional to the distance
squared between the bead and
the focus,
. The bead is attracted to the center of the ellipse by the force proportional to the
distance
between the bead and the center,
. a) Write down the force vectors. b) Derive the
potential energy (if the forces are conservative). c) Find the velocity as a function of angle
(for a given
energy). c) Find the angular momentum relative to the coordinate origin as a function of .
13_Energy_momentum/e_13_1_019.html
Potential energy, conservation laws
In a galaxy the gravitational potential (potential energy) is
,
. Find the relation between
the total energy and angular momentum for circular orbits. Find the dependence of the orbit period on the
radius.
13_Energy_momentum/e_13_1_020.html
Potential energy, conservation laws
A particle moves under the influence of the body
which is in the coordinate origin. In the beginning the
particle is at a very large distance from , moves with the velocity and would pass at the distance from
if there were no interaction (this is called \textit{impact parameter}). What is the minimal distance between the
particle and
for the potential energy is
(analyze
and
).
13_Energy_momentum/e_13_1_021.html
Potential energy, conservation laws
Find
for a particle with
.)
in the potential energy
. (Hint:
for
13_Energy_momentum/e_13_1_022.html
apogee and perigee
A satellite of the mass , moving in the Earth potential
, has the total energy
momentum . Find the maximum (apogee) and minimum (perigee) distance from the Earth.
and angular
13_Energy_momentum/e_13_1_023.html
Potential energy, conservation laws
A particle (mass ) is moving in the central field
angular momentum suddenly are changed by
and
from the attracting body on the new orbit ?
on a circular orbit
. The energy and
. What are the maximal and minimal distances
13_Energy_momentum/e_13_1_024.html
Energy Conservation and Work
A necklace is laying on a table without friction when a quarter of it is hunging from the edge.
The necklace's length is
and its mass is .
What is work needed in order to pull the necklace to the table?
Do it in two ways:
(a) Using the definition of work.
(b) Using energy conservation.
13_Energy_momentum/e_13_1_025.html
Momentum Conservation
The mass of a rocket at time is given by
( is constatnt)
due to gases that exhausting from it (in the opposite direction).
The gases velocity is
with respect to the rocket.
If the rocket take off from earth
1. What is the condition for the rocket to take off despite the gravity force?
2. Find the rocket velocity as a function of time.
3. A friction force of the form
( is constant) is also acting on the rocket, find
4. What is the rocket velocity after a long time (
)?
13_Energy_momentum/e_13_1_026.html
Potential Energy, Coservation Laws
A particle move in a potential energy
.
.
1. What is the force? draw the graph of U(x).
2. What is the direction of the force at every point?
3. What are the equilibrium points? are they stable?
4. For given energies, what are the possible trajectories?
13_Energy_momentum/e_13_1_027.html
Work
Two forces acting on a particle
N
N
The particle moves from the point
to the point
1. What is the work done on the particle?
2. What would be the work if the particle move from
to ?
.
13_Energy_momentum/e_13_1_028.html
Work
A particle move according to
1. Find the kinetic energy of the particle in the points
and
.
2. What is the work done on the particle by the centripetal force between the points
3. Show that in order to bring back the particle to point
and
?
the work needed is 0.
13_Energy_momentum/e_13_1_029.html
Momentum Conservation
A rocket is moving due to exhausting gases at high velocity in the opposite direction. The gases are products of
fuel burning so the mass of the rocket is reduced all the time. The rate of exhausting is constant and the gases
velocity is
with respect to the rocket.
1. Derive the equations of motion for a rocket moving in space (far from earth). Find the volcity as a function of
time where you can assume that
and
.
2. If the rocket takes off from earth what is its velocity as a function of time?
13_Energy_momentum/e_13_1_030.html
Potential energy, conservation laws
A particle's trajectory is
and it moves in a central force. Find
.
13_Energy_momentum/e_13_1_031.html
Potential energy, conservation laws
A particle (mass , energy
such that
.
Find the angular momentum.
) move in a potential
,
13_Energy_momentum/e_13_1_032.html
Potential energy, conservation laws
A particle (mass
) move in central field
in a circular orbit. Its angular momentum is .
Find its energy and the time that is needed to complete a cycle.
13_Energy_momentum/e_13_1_033.html
Collisions
A mass
is attached to a loose spring (spring constant ) and lies on a plane with kinetic friction coefficient
.
A bullet (mass ) is fired toward the mass in a velocity .
How much will the spring contract?
13_Energy_momentum/e_13_1_034.html
Momentum Conservation
A particle is at rest in a constant magnetic field
.
Suddenly it decays into 3 particles (with mass and charge)
,
and
.
The particles
and
make a circular motion with diameter of
and
respectively.
Assume that the angle between the initial velocities of m1 and m2 is .
What is the velocity of the third particle?
13_Energy_momentum/e_13_1_035.html
Many Particle System
Show that the kinetic energy of two particles with masses
center of mass and the kinetic energy of the relative motion.
and
splits into the kinetic energy of the
13_Energy_momentum/e_13_1_036.html
Many Particle System
Two bodies (
and
) are at distamce
from each other.
At
starts to "pull"
with a constant force .
1. Where will the masses meet?
2. What will be the velocities of the bodies before they collide?
13_Energy_momentum/e_13_1_037.html
אנרגיה ותנועה מעגלית
. R=1m למסילה מעגלית אנכית בעלת רדיוסA על מישור אופקי המתחבר בנקודהV0 גוף מחליק ללא חיכוך במהירות
.C מתנתק הגוף מהמסילה וממשיך במעופו עד לפגיעתו במישור האופקי בנקודהh = 1.707R הנמצאת בגובהB בנקודה
? B מהי מהירות הגוף בעוברו בנקודה.א
? של הגוףV0 מה מהירותו ההתחלתית.ב
? A- וC מה המרחק בין הנקודות.ג
13_Energy_momentum/e_13_1_038.html
עבודה
ידוע שהכח שפועל על גוף הוא:
.
א .מהי העבודה הדרושה בשביל להזיז את הגוף מ-
אל
ב .מהי העבודה הדרושה בשביל להזיז את הגוף מ-
אל
13_Energy_momentum/e_13_1_039.html
תנועה מעגלית ושימור תנע
קליע שמסתו mפוגע בבול עץ שמסתו Mבמהירות vויוצא במהירות . v/2
בול העץ הקשור בחוט מבצע תנועה מעגלית ברדיוס .R
מה צריכה להיות המהירות המינימלית vשל הקליע )לפני הפגיעה( כדי שבול העץ יבצע סיבוב שלם ?
13_Energy_momentum/e_13_1_040.html
תנע
גוף נזרק כלפי מעלה במהירות 30מטר לשניה בהשפעת .gב 2-שניות התנע שלו משתנה ב ] -20ק"ג*מטר/שניה[
א .מהו המתקף שפעל עליו במשך 2השניות?
ב .מהי מסתו?
ג .מהו הכוח שפועל עליו?
ד .מצא את מהירות הגוף לאחר 2שניות
13_Energy_momentum/e_13_1_041.html
התנגשות
קליע שמסתו 5גרם ומהירותו 400מטר לשניה נורה לעבר מטוטלת בליסטית שמסתה 4ק"ג.
בכמה תעלה המטוטלת לאחר ההתנגשות? כמה אחוז מהאנרגיה הלך לאיבוד?
13_Energy_momentum/e_13_1_042.html
עבודה
לבנה במשקל 263גרם נופלת על קפיץ אנכי עם קבוע קפיץ של
עד שנעצר לרגע במנוחה .בזמן שהקפיץ מתכווץ ,מצאו:
א( כמה עבודה נעשית על ידי כוח הכבידה ?
ב( כמה עבודה נעשית על ידי כוח הקפיץ ?
ג( באיזו מהירות פגעה הלבנה בקפיץ ?
.הלבנה נצמדת לקפיץ ,והקפיץ מתכווץ 11.8ס"מ
13_Energy_momentum/e_13_1_043.html
תנועה במסה משתנה
עגלה עמוסת חול נגררת על ידי כוח קבוע
התנועה.
.כתבו ופתרו את משוואות
.עקב חור בקרקעית נשפך חול בקצב אחיד
13_Energy_momentum/e_13_1_044.html
Definition of torque
A particle is located at
. A constant force of magnitude 2.6N acts on
the particle. find the components of the torque about the origin when the force acts in
a) the positive
direction.
b) the negative
direction.
13_Energy_momentum/e_13_1_045.html
תנועה במסה משתנה
לווין נע דרך צביר גזי דליל באזור בו כח הכובד זניח .תוך כדי תנועתו ,מספח הלווין חלקיקים מהצביר הגזי כך שמסתו גדלה בקצב
) - kקבוע( .מהירות הלווין ב t=0היא
כפונקציה של הזמן.
,ומסתו אז
.נניח כי הצביר הגזי במנוחה
.מהי מהירות הלווין
13_Energy_momentum/e_13_1_046.html
פוטנציאל מרכזי
ו-
במסלול אליפטי כאשר
גוף בעל מסה mנע בפוטנציאל מרכזי
המהירות שלו מיידית כך שהוא ממשיך במסלול מעגלי .מה שינוי התנע המיידי באותה נקודה ?
נתונים .בנקודה
משנים את
13_Energy_momentum/e_13_2_004.html
כוחות משמרים
מי מבין הכוחות הבאים הוא כוח משמר?
.1
.2ככוח הכבידה
.3כוח של קפיץ
13_Energy_momentum/e_13_2_005.html
"שריפת קלוריות"
האנרגיה שבמזון נמדדת ביחידות של קלוריה .קלוריה זו יחידת אנרגיה תרמית ,שיחס המרתה ל – SIהוא . cal = 4.2 J 1בהנחה
שאפשר להמיר כ 50% -מכמות האנרגיה שאגורה במזון לאנרגיה מכאנית ,חשב/י לאיזה גובה את/ה צריך/ה לטפס )למשל בסטפר בחדר
כושר( כדי לשרוף את האנרגיה המתקבלת מאכילת gr 100לחם .נתון שבכמות זו של לחם יש .kcal 250
13_Energy_momentum/e_13_2_006.html
מסה נעה מפסגת משטח כדורי
מסה mמתחילה לנוע מפסגת משטח כדורי בעל רדיוס .Rהמשטח הוא חלק ומקובע לקרקע.
.1
.2
.3
.4
מצא/י את האנרגיה הפוטנציאלית כפונקציה של .θ
מצא/י את האנרגיה הקינטית כפונקציה של .θ
מצא/י את התאוצה הרדיאלית והמשיקית כפונקציה של .θ
הראה/י שאילו היה קיים חיכוך ,היה החלקיק עוזב את המשטח בזווית גדולה יותר.
13_Energy_momentum/e_13_2_007.html
פגיעת אסטרואיד בכדור הארץ
אסטרואיד 1989FCהנו בעל רדיוס של 800מטר,וצפיפות ) ρ = 7 gr/cm3בערך של ברזל( .מהירותו של האסטרואיד ביחס לכדור
הארץ היא .km/hr 74014בהנחה והוא היה פוגע בכדור הארץ ,והפגיעה הייתה מתרחשת בים )סיכוי של ,(70%לאיזה גובה היה
מתרומם הטסונמי )נד מים( בעקבות הפגיעה?
הנחות ונתונים נוספים:
צורת הטסונמי היא היא משולשת ,שליש מאנרגיית הפגיעה מושקעת ביצירת הטסונמי ,צפיפות המים היא ,ρ = 1 gr/cm3מהירות
ההתקדמות של הטסונמי היא ,km/hr 1700אורך קו החוף בו פוגע הטסונמי הוא .km 10000הנח שהגובה של מרכז המסה )בשביל
חישוב האנרגיה הפוטנציאלית( נמצא בשליש הגובה.
13_Energy_momentum/e_13_2_008.html
תנועת טבעת על קשת
טבעת בעלת מסה m=5 kgנעה על מסילה חסרת חיכוך ,ABCשצורתה חצי מעגל ברדיוס .R=2 mעל הטבעת פועלים שני כוחות
בעלי גודל F = 40 Nו .F'= 150 N -הכוח משיק למעגל במשך כל זמן התנועה .הכוח ' Fשומר על כיוון קבוע של 30ºמעל לאופק.
.1חשב/י את העבודה הכוללת המבוצעת על ידי מערכת הכוחות הפועלים על הטבעת כאשר היא נעה מ A-ל.B-
.2חשב/י את העבודה הכוללת המבוצעת על ידי מערכת הכוחות הפועלים על הטבעת כאשר היא נעה מ A-ל.C-
13_Energy_momentum/e_13_2_009.html
לב האדם
לב האדם הוא משאבה רבת כוח ואמינה ביותר .בכל יממה הוא שואב ופולט כ 7500 -ליטרים של דם .אם העבודה הנעשית על ידי הלב
שווה לעבודה הדרושה להעלות כמות כזו של דם לגובה ממוצע של אישה – ,1.63mואם צפיפות הדם שווה לצפיפות המים,
.1כמה עבודה עושה הלב ביממה?
.2מה תפוקת ההספק שלו בואטים?
13_Energy_momentum/e_13_2_010.html
פעלולן
מסת פעלולן בקרקס 60ק"ג ,הפעלולן מבצע תרגיל בו הוא נורה על ידי קפיץ בעל קבוע של 2000נ'/מ' .הקפיץ מכווץ לפני הירי ב1 -
מטר ביחס למצב הרפוי ומערכת הירי מוצבת בזווית של °30מעל האופק .באיזה מרחק כדאי לעוזר הפעלולן להציב את רשת הביטחון
כדי שלא יאבד את העבודה )ואת הבוס(.
הניחו כי רשת הביטחון פרושה בגובה השווה לגובה ניתוק הפעלולן מהקפיץ.
13_Energy_momentum/e_13_2_011.html
פוטנציאל מרכזי ויוניזציה
,כאשר rהוא מרחק הגוף ממרכז
חלקיק קשור לנקודה מסויימת )מרכז הכוח( .האנרגיה הפוטנציאלית של החלקיק היא
הכוח A .ו B -קבועים חיוביים.
.1מצא/י את מרחק שיווי המשקל הראה/י כי ש.מ .הוא יציב.
.2חשב/י את אנרגיית היוניציה .כלומר ,העבודה שיש להשקיע כדי להרחיק את החלקיק ממרחק
בעזרת ו
.3בטא/י את
.4מהי העבודה שמבצע הכוח המרכזי הנגזר מ-
.
? xyבטא/י בעזרת
.5אם נתון שהאנרגיה הכוללת של החלקיק היא
כשהחלקיק עובר מנקודה 1
לאינסוף.
לנקודה 2
במישור
,וכן נתון שתנועתו רדיאלית בלבד ,מצא/י את הנקודות בהן המהירות
מתאפסת.
13_Energy_momentum/e_13_2_012.html
שאלת הוק
אחד הגורמים שעוררו את עבודתו של ניוטון על המכניקה היתה שאלה ששלח לו הוק:
אם קודחים בור באדמה עד לצידו השני של כדור הארץ ,ומפילים לתוכו כדור ,מה תהיה תנועתו?
13_Energy_momentum/e_13_2_013.html
שרשרת על שולחן
נתונה שרשרת בעלת מסה mואורך Lהמונחת על שולחן חסר חיכוך ,כאשר רבע מאורכה נשאר תלוי באוויר כמתואר באיור .כמה
עבודה יש להשקיע בכדי למשוך את השרשרת במלואה חזרה לשולחן?
13_Energy_momentum/e_13_2_014.html
חטיפת כדורים
בסרטים רואים בד"כ כי האדם )מ"הרעים" כמובן( החוטף כדור עף לאחור בעוצמה רבה .האם סצינות אלו מציאותיות?
נתונים:
משקל אדם ממוצע – .kg 80עבור כדור אקדח גדול )קליבר :(inch 0.45מסה , grain 230 -מהירות – .ft./sec 830עבור כדור 7.62
מ"מ של רובה :M-24מסה – , grain 115מהירות – .mi/hr 2180
הערה grain :היא מידת משקל עבור קליעים grain .אחד שווה למשקל גרגר חיטה בודד מהשיבולת המרכזיתgrain=0.0648 gram 1 .
.
13_Energy_momentum/e_13_2_015.html
שליחת חללית לצדק
כאשר NASAמשגרת חללית לכיוון צדק ,היא שולחת אותה להקיף קודם את נוגה .האם יש היגיון בשיגור כזה? האם זהו עוד מחדל של
?NASA
מהירות החללית 12 -קמ/שנ' ,מהירות נוגה 35 -קמ/שנ'.
רמז :ניתן להתייחס להקפת נוגה כאל התנגשות אלסטית.
13_Energy_momentum/e_13_2_016.html
גוף על קפיץ מתפרק
נתונים שני גופים כמתואר באיור .ברגע מסוים מתרחש פיצוץ בין שניהם וגוף m1ניתז לכיוון ימין במהירות .v1
.1מה היא מהירותו המרבית של גוף ?m2באיזו מיקום?
.2מה היא משרעת התנועה?
.3מה הוא ההעתק כפונקציה של הזמן?
13_Energy_momentum/e_13_2_017.html
התפוצצות פגז בעת תנועתו
פגז נורה בזווית 60מעלות מעל לאופק במהירות לוע של .m/s 360בפסגת מסלולו הוא מתפוצץ לשני רסיסים שווי מסה .רסיס אחד
נופל אנכית כלפי מטה בנקודת הפיצוץ .באיזה מרחק מנקודת הירי פוגע הרסיס השני בקרקע?
13_Energy_momentum/e_13_2_018.html
תנועת קרונות בגשם
ביום גשם משלחים שני קרונות זהים במהירות התחלתית שווה .בקרון האחד מצטברים מי הגשם בקצב קבוע ,ובקרון השני ישנו חור
המאפשר למי הגשם לזרום החוצה בניצב לכיוון התנועה .החיכוך בין הקרון והמסילה זניח.
.1רשום ביטוי למהירות כל קרון כפונקציה של הזמן.
.2איזה קרון יגיע למרחק גדול יותר עד עצירתו הסופית?
13_Energy_momentum/e_13_2_019.html
ביקוע
ביקוע גרעיני ,תהליך המספק אנרגיה בתחנות כוח גרעיניות ,מתרחש כאשר גרעין כבד מתבקע לשני גרעינים קטנים יותר .ריאקציה אחת
כזו מתרחשת כאשר נויטרון מתנגש בגרעין של U235ומפצל אותו לגרעין Ba141ולגרעין .Kr92בריאקציה זו מתפצלים ונתזים גם
שני נויטרונים נוספים מגרעין ה U235 -המקורי .איור א' מתאר את המצב לפני ההתנגשות .לאחר ההתנגשות נע גרעין הBa141 -
בכיוון ,+zוגרעין -ה Kr92בכיוון .-zשלושת הנויטרונים נעים במישור xyכמתואר באיור ב' .נתון כי מהירותו ההתחלתית של הנויטרון
היא 4מיליון מ/שנ' ,ומהירותו הסופית 2מיליון מ/שנ' .מה הן מהירויות שני הנויטרונים האחרים? ומה ניתן לומר על מהירויות גרעיני ה-
Ba141וה?Kr92 -
13_Energy_momentum/e_13_2_031.html
תנע
המונחת על שולחן חסר חיכוך .בין המסות קיים חיכוך בעל מקדם חיכוך קינטי
מונחת על גבי מסה
מסה
מהירות התחלתית .מה יהיו מהירויות המסות לאחר זמן רב?
מעינקים למסה
א .פתור/י על ידי שיקולי תנע.
ב .פתור/י על ידי שיקולי אנרגיה.
.
13_Energy_momentum/e_13_2_032.html
תנע
חבל גמיש ואחיד בעל אורך ומסה מונח על הקרקע .מהו הכוח שיש להפעיל על מנת להרים אנכית
את אחד מקצות החבל במהירות קבועה ? מצא/י ביטוי לכוח כפונקציה של אורך החבל המורם .
13_Energy_momentum/e_13_2_033.html
תנע
נוסע על מסילה חסרת חיכוך במהירות
קרון בעלי מסה
.
כך שקצב גידול המסה שלו
.לפתע מתחיל לרדת גשם ומים נאגרים בקרון
א .מהי מהירות הקרון כפונקציה של הזמן?
ב .מה היתה מהירות הקרון אם בקרון היה חור כך שהמים
היו זורמים החוצה בניצב לכיוון הנסיעה? )הנח/י כי המים לא מצטברים בקרון(.
ו. -
,
בטא/י תשובותיך באמצעות
13_Energy_momentum/e_13_2_034.html
עבודה ואנרגיה
שרשרת במסה mובאורך dמונחת על שולחן אופקי ,כך שרבע ממנה תלוי מעבר לקצה השולחן .בין השרשרת והשולחן מקדם חיכוך
.0.2
השרשרת משוחררת ממצב סטטי ומחליקה מן השולחן .חשבו מה תהיה מהירות השרשרת ברגע שתסיים להחליק על השולחן.
13_Energy_momentum/e_13_2_035.html
פוטנציאל מרכזי
הוקטור רונגה לנץ מוגדר ע"י:
הראו שעבור פוטנציאל הכבידה:
וקטור רונגה לנץ הוא קבוע תנועה.
13_Energy_momentum/e_13_3_100.html
עבודה ואנרגיה
גוף נקודתי מחליק על פני משטח עקום )ראה/י שרטוט( .הגוף משוחרר ממנוחה בנקודה ונעצר בנקודה הנמצאת
במרחק אופקי ממנה .מקדם החיכוך הקינטי בין הגוף לבין המשטח הוא .מהו הפרש הגבהים בין הנקודות ו? -
הנח/י שמהירות הגוף היא קטנה כך שניתן להזניח את התוספת לכוח הנורמלי הנוצרת בשל התנועה במסלול עקום.
13_Energy_momentum/e_13_3_101.html
עבודה ואנרגיה
נע במעלה מישור משופע .זוית הנטיה של המישור ביחס לאופק היא
גוף נקודתי שמסתו
בהשפעת הכוחות הבאים:
בכיוון האופקי.
שכיוונו במעלה המישור המשופע.
כוח חיכוך שגודלו קבוע.
-כוח הכובד.
.הגוף נע
א .חשב/י את העבודה שנעשתה על ידי הכוח השקול.
ב .חשב/י את העבודה שנעשתה על ידי כל אחד מהכוחות והראה שסכומם שווה לעבודת הכוח השקול.
13_Energy_momentum/e_13_3_102.html
עבודה ואנרגיה
גוף נקודתי מונח בתחתית מישור משופע שזוית נטייתו ביחס לאופק .מעניקים לגוף מהירות התחלתית
המישור המשופע .מקדם החיכוך הסטטי והקינטי בין הגוף לבין המישור הוא .
א .מה המרחק שיעבור הגוף במעלה המישור המשופע עד שייעצר? בטא/י תשובתך באמצעות , ,ו. -
באמצעות ו. -
ב .נתון כי מהירות הגוף בהגיעו לתחתית המישור המשופע .הבע/י את היחס
? הסבר/י.
ג .מה קורה ליחס שחושב בסעיף הקודם כאשר
במעלה
13_Energy_momentum/e_13_3_103.html
עבודה ואנרגיה
גוף נקודתי מבעל מסה נע במישור .מיקומו כפונקציה של הזמן נתון על ידי הוקטור
.
כאשר , ,ו -קבועים וחיוביים .כמו כן
א .הראה/י כי מסלול החלקיק יוצר אליפסה שמרכזה בראשית.
ב .הראה/י כי הכוח הפועל על החלקיק מופנה תמיד לכיוון הראשית.
ג .מה העבודה שנעשית על החלקיק כאשר הוא נע מהנקודה
ד .איזה ערך מקבל הביטוי שחושב בסעיף הקודם כאשר
?
לנקודה
? הסבר/י.
להנאתכם משוואת אליפסה:
13_Energy_momentum/e_13_3_104.html
עבודה ואנרגיה
נמצא במעלה שיפוע של
גוף נקודתי בעל מסה
מכווצו ב-
.בתחתית השיפוע נמצא קפיץ ,אשר כוח של
.
הקפיץ מכווץ ב-
א .מהי מהירות הגוף בהגיעו לקפיץ?
ב .מה המרחק שהגוף עבר במורד השיפוע עד לעצירתו?
ג .מהו המרחק לאורך השיפוע אותו יעלה הגוף חזרה?
)ראה/י שרטוט( בעל מקדם חיכוך קינטי
כך שהוא נעצר כאשר
.הגוף משוחרר מגובה
13_Energy_momentum/e_13_3_105.html
עבודה ואנרגיה
גוף נקודתי בעל מסה מחליק ללא חיכוך על מסילה כמתואר בשרטוט.
א .הגוף משוחרר ממנוחה בנקודה .מהו הכוח הפועל על הגוף בנקודה ?
ב .מהו הגובה המינימלי מעל הנקודה ממנו יש לשחרר את המסה על מנת שתשלים סיבוב מלא בלולאה?
13_Energy_momentum/e_13_3_106.html
עבודה ואנרגיה
מחליק על מסילה כמתואר בשרטוט .הפרש הגבהים בין נקודה לבין נקודה
גוף נקודתי בעל מסה
הגוף מתנגש בקפיץ בעל קבוע קפיץ .
קו ישר ואופקי .הגוף משוחרר ממנוחה בנקודה .בנקודה
הוא
.קטע
הינו
מהו הכיווץ המקסימלי של הקפיץ כאשר:
א .המסילה חסרת חיכוך.
שאורכו קיים חיכוך בעל מקדם חיכוך קינטי
ב .בקטע
.
13_Energy_momentum/e_13_3_107.html
עבודה ואנרגיה
גוף נקודתי בעל מסה
נוחת על קפיץ בעל קבוע
וגורמת לו כיווץ מקסימלי של
.
א .כמה עבודה נעשתה על ידי כוח הכובד במהלך כיווץ הקפיץ?
ב .כמה עבודה נעשתה על ידי הקפיץ במהלך כיווץ הקפיץ?
ג .מה היתה מהירות המסה הרגע פגיעתה בקפיץ?
ד .לו מהירות המסה ברגע פגיעתה בקפיץ היתה כפולה ,מה היה כיווץ הקפיץ המקסימלי? כמה פתרונות למשוואה
שקבלת ומה מייצג כל פתרון?
13_Energy_momentum/e_13_3_108.html
עבודה ואנרגיה
גוף נקודתי משוחרר ממנוחה בפסגת משטח כדורי )ראה/י שרטוט(.
א .בהזנחת החיכוך ,באיזו זוית יתנתק הגוף מהמשטח?
ב .חוזרים על התהליך בירח .באיזו זוית יתנתק הגוף מהמשטח?
ג .בחזרה בכדור הארץ ,הראה/י כי ללא הזנחת החיכוך הזוית בה מתנתק הגוף מהמשטח גדולה יותר.
13_Energy_momentum/e_13_3_109.html
עבודה ואנרגיה
כך שמהירותה קבועה כל הזמן .בזמן מסויים מניחים על העגלה תיבה בעלת
איש חרוץ גורר עגלה בעלת מסה
.ברגע הנחת התיבה ,מהירותה של התיבה .בין העגלה לבין התיבה חיכוך .
מסה
א .שרטט/י תרשים כוחות עבור העגלה ועבור התיבה.
ב .מהי העבודה שבוצעה על התיבה מרגע הנחתה על העגלה ועד שהגיע למהירות ? מי ביצע עבודה זו?
ג .מהי העבודה שמבצע האיש החרוץ מרגע הנחת התיבה על העגלה ועד שהגיעה למהירות ?
ד .הסבר/י מדוע התשובות לסעיפים ב' ו-ג' שונות.
13_Energy_momentum/e_13_3_201.html
מתקף ותנע
מונח על משטח אופקי ומחובר לקפיץ בעל קבוע קפיץ
בול עץ בעל מסה
וננעץ בבול .מהי ההתכווצות המקסימלי של הקפיץ?
א .כאשר בין הבול לבין המשטח אין חיכוך.
ב .כאשר בין הבול לבין המשטח חיכוך קינטי .
.קליע בעל מסה
נורה במהירות
13_Energy_momentum/e_13_3_202.html
מתקף ותנע
מחליק על משטח אופקי חלק במהירות לאורך ציר )ראה/י שרטוט( .החלקיק מתנגש
חלקיק נקודתי מסה
בכיוון היוצר זוית
בחלקיק אחר בעל מסה הנמצא במנוחה .לאחר ההתנגשות נע החלקיק שמסתו במהירות
עם ציר .
בת
לאחר ההתנגשות?
א .מהי המהירות )גודל וכיוון( של החלקיק שמסתו
ב .האם ההתנגשות אלסטית לחלוטין?
13_Energy_momentum/e_13_3_203.html
מתקף ותנע
מונחת על עגלה שמסתה
היכולה לנוע ללא חיכוך על משטח אופקי )ראה/י שרטוט( .מעניקים
תיבה שמסתה
לתיבה מהירות .
של העגלה שימנע את מעבר התיבה לצידה השני?
א .מהו הגובה המינימלי
שחושב בסעיף א' ,מהן מהירויות העגלה והתיבה כאשר התיבה חוזרת לתחתית העגלה?
ב .אם גובה העגלה גדול מ-
13_Energy_momentum/e_13_4_071.html
תנע ואנרגיה
בסרטים רואים בד" כ כי האדם )מ" הרעים" כמובן( החוטף כדור עף לאחור בעוצמה רבה .האם סצינות אלו מציאותיות?
נתונים:
משקל אדם ממוצע – .kg 80
עבור כדור אקדח גדול )קליבר :(inch 0.45מסה , grain 230 -
מהירות – .ft./sec 830
עבור כדור 7.62מ" מ של רובה :M-24מסה – , grain 115
מהירות – .mi/hr 2180
הערה grain :היא מידת משקל עבור קליעים grain .אחד שווה למשקל גרגר חיטה בודד מהשיבולת המרכזית.
.
13_Energy_momentum/e_13_4_072.html
תנע ואנרגיה
קליע במסה 3.5ק" ג נורה אופקית לעבר שתי קוביות הנמצאות במנוחה על-גבי שולחן חסר חיכוך .מסת הקוביה הראשונה 1.20ק" ג
ומסת הקוביה השניה 1.80ק" ג .הקליע עובר דרך הקוביה הראשונה ונתקע בשניה .בעוברו דרך הקוביה הראשונה הוא מעניק לקוביה
מהירות של 0.63מטר לשניה ,ולאחר שהוא ננעץ בקוביה השניה ,מהירותה 1.4מטר לשניה.
·מהי מהירות הקליע לאחר שחדר דרך הקוביה הראשונה?
·מהי המהירות ההתחלתית של הקליע?
13_Energy_momentum/e_13_4_073.html
תנע ואנרגיה
עגלה עמוסת חול נגררת על ידי כוח קבוע
הניחו כי בזמן
.עקב חור בקרקעית נשפך חול בקצב אחיד
העגלה במנוחה ,ומסתה אז היא
.
.
א( מצאו את המסה כתלות בזמן.
ב( מצאו את מהירות העגלה כתלות בזמן.
13_Energy_momentum/e_13_4_074.html
תנע ואנרגיה
חודר לתוך
ומהירותו
מונח על גבי שולחן חסר חיכוך .קליע שמסתו
ובתוכו דחוס גז שמסתו
כדור שמסתו
הכדור ונלכד בתוכו ברגע ) .t=0ניתן להזניח את פליטת הגז במהלך ההתנגשות( .הגז הדחוס בכדור נפלט במהירות קבועה
ביחס לכדור ובקצב קבוע,
) -aפרמטר חיובי(.
·מהי מהירותו של הכדור לאחר ההתנגשות עם הקליע.
·מצא את מהירות הכדור כפונקציה של הזמן )הגז מתחיל להיפלט ב.(t=0-
·מהי מהירותו הסופית של הכדור.
13_Energy_momentum/e_13_4_075.html
אנרגיה מהירות וזמן
שני גופים זהים מתחילים לנוע ימינה ,כפי שמראה האיור ,במהירויות זהות ,מנקודה
.איזה גוף יגיע ראשון לנקודה
?
13_Energy_momentum/e_13_4_076.html
שימור אנרגיה
א( הוכח/י מי מבין הכוחות הבאים הוא כוח משמר:
כאשר Bהוא וקטור כלשהו ו V-היא מהירות )רמז :לשים לב למכפלה הוקטורית ולא לשכוח ש-
(
ב( היחידות של מהירות האור cהן
,של קבוע הכבידה Gהן
ושל קבוע פלנק hהן
.על ידי שימוש בגדלים
אלו מצא/י גודל בעל יחידות של (I:זמן (II ,מרחק
13_Energy_momentum/e_13_4_077.html
הספק
א( לב האדם הוא משאבה רבת כוח ואמינה ביותר .בכל יממה הוא שואב ופולט כ 7500-ליטרים של דם .אם העבודה הנעשית על ידי
הלב שווה לעבודה הדרושה להעלות כמות כזו של דם לגובה ממוצע של אישה – ,1.63mואם צפיפות הדם שווה לצפיפות המים
(Iכמה עבודה עושה הלב ביממה?
(IIמה תפוקת ההספק שלו בואטים?
ב( נתון רכב במשקל 1.2טון ,והספק מנוע של .125hpבנסיעה מישורית מפתח הרכב מהירות מכסימלית של 165קמ"ש.
(Iמה הכוח שמפתח המנוע במהירות זו?
(IIכעת עולה הרכב במעלה מדרון בשיפוע של .5ºחשב/י איזו מהירות מכסימאלית יפתח הרכב.
(? מה ערכה ב? SI-
ג( מה מציינת היחידה קילוואט-שעה )
13_Energy_momentum/e_13_4_078.html
תנע ואמת בפרסום
בהיותך מהנדס/ת מחלקת חגורות בטיחות של יצרנית רכב ידועה ניגש אליך מנהל המחלקה ואומר לך שהוא שמע ברדיו שבעת
התנגשות במהירות של 60קמ"ש ,תינוק במשקל 2.5ק"ג מפעיל על אמו שמחזיקה אותו כוח השווה למשקל של טון אחד!
האם זה נכון? )התנגשות נמשכת msec 5בממוצע(
א( מה פתאום! זה שוב הרדיו עם השטויות שלו!
ב( כן ,זה מה שקורה כשהילד לא בכיסא בטיחות!
ג( מה???
13_Energy_momentum/e_13_4_079.html
מזחלת -מסה משתנה
מזחלת מלאה בחול מחליקה ללא חיכוך במורד מישור ששיפועו .30°נתון כי החול דולף מתחתית המזחלת בקצב של .kg/sec 2המזחלת
מתחילה ממנוחה ומסתה .kg 40
א( מה תאוצת המזחלת ומה ההבדל בין החול לבין המים בשאלה מספר ?1
ב( כמה זמן ייקח לה לעבור m 120לאורך המורד?
13_Energy_momentum/e_13_4_080.html
צלחת חרס ושימור תנע
צלחת חרס שמסתה
נורית במהירות של
הנע כלפי מעלה במהירות של
א( לאיזה גובה נוסף תגיע הצלחת?
ב( לאיזה תוספת מרחק תגיע הצלחת?
בזווית של .30°בשיא הגובה היא נפגעת מלמטה על ידי קליע שמסתו 15g
.הקליע נתקע בצלחת החרס.
13_Energy_momentum/e_13_4_081.html
שימור תנע
נתון גוף m1המשוחרר ממנוחה מראשו של מדרון משופע בזווית α
וגובה .hמסתו של המדרון המשופע הוא ,m2כמו"כ נתון כי אין חיכוך בין m1ל m2 -ולקרקע.
א( מצא/י את מהירותם של m1 , m2כאשר m1מגיע לקרקע.
ב( מה הוא המרחק האופקי שעבר m1עד אשר הגיע לקרקע
)רמז :זכור את אשר אמר לך מרכז המסה!(?
13_Energy_momentum/e_13_4_082.html
רקטה
נתונה רקטה בעלת מסה התחלתית . m0המנוע של הרקטה שורף דלק בקצב
,וגזי הפליטה יוצאים במהירות
Vrיחסית לרקטה.
א( מצא/י את הכוח )הדחף( שמפיק המנוע ,ואת תאוצת הרקטה.
הם דלק .קצב הבעירה הוא , kg/sec 480מהירות גזי הפליטה היא 3.27
,מתוכם
ב(
.km/secהאם הרקטה תצליח להמריא מכדו"ה?
13_Energy_momentum/e_13_4_083.html
עגלה על מסילה
עגלה עם מסה 67ק"ג ,נעה על גבי מסילה שמתוארת ע"י המשוואה:
ו-
כאשר
אין חיכוך על המסילה )ניתן להניח שימור אנרגיה(
לחשב את העבודה שנעשית ע"י כל הכוחות כאשר העגלה נעה בין
ו-
13_Energy_momentum/e_13_4_084.html
שימור תנע
הראה דרך מרכז המסה שאם אין כוחות חיצוניים יש שימור תנע?
האם זה אומר שיש שימור אנרגיה?
13_Energy_momentum/e_13_4_085.html
מרכז מסה של תיל
נתון תיל באורך ומסה .צפיפות המסה היא :
קצהו השמאלי של התיל נמצא בראשית הצירים.
ו-
א .בטא את באמצעות
ב .היכן מרכז המסה של התיל?
13_Energy_momentum/e_13_4_086.html
אב בן וסירה
אב ובנו נמצאים בקצהו השמאלי של סירה הנמצאת במנוחה.
ברגע מסוים הבן צועד למרכז הסירה והאב לקצה הימני של הסירה.
מסת הסירה -
אורך הסירה -
מסת האב -
מסת הבן -
בכמה הסירה זזה?
13_Energy_momentum/e_13_4_087.html
התנגשות אנשים במישור משופע
אברהם נמצא בקצה מישור משופע .הוא מחליק למטה )בלי חיכוך(.
הוא מתנגש בבני והם ממשיכים להחליק ביחד.
לאחר שעבר
עד איזה גובה הם יגיעו? )ביחס לנקודת המפגש(
נתון שבני שוקל שני שליש מאברהם
13_Energy_momentum/e_13_4_088.html
עגלה וגבעה
עולה על גבעה שיכולה לנוע על משטח חסר חיכוך.
עגלה שמסתה
הגבעה נמצאת במנוחה לפני עליית העגלה .המהירות ההתחלתית של העגלה היא
א .עד לאיזה גובה תעלה עגלה?
ב .מה תהיה מהירות העגלה ומהירות הגבעה לאחר שהעגלה תרד ממנה?
13_Energy_momentum/e_13_4_089.html
עבודה וקפיץ
מסה מופלת על קפיץ אנכי במנוחה .קבוע הקפיץ הוא .
המסה נצמדת לקפיץ ומכווצת אותו .אורך הכיווץ המקסימלי הוא .
בזמן שהקפיץ מתכווץ איזה עבודה נעשית
א .על ידי הגרויטציה.
ב .על ידי הקפיץ.
ג .מה הייתה מהירות המסה ברגע הפגיעה?
ד .נתון כי המסה נפלה ממנוחה ,מאיזה גובה מעל הקפיץ היא נפלה?
ה .אם גובה הנפילה יוכפל מה יהיה הכיווץ המקסימלי של הקפיץ.
13_Energy_momentum/e_13_4_090.html
עבודה גוף עם חיכוך
גוף שמסתו .מחליק במורד מישור משופע למרחק .המישור נטוי בזוית
.חשב
:הגוף למשטח הוא
מתחת לאופק .מקדם החיכוך בין
.א( את העבודה הנעשית על ידי החיכוך על המסה
.ב( את עבודת כח הכובד
.ג( את עבודת הכח הנורמלי
.ד( את סך העבודה הנעשית על הגוף
.ה( את מהירותו של הגוף אם הוא החל את תנועתו ממנוחה ,הנח כי החיכוך מספיק חלש כך שהגוף לא נשאר במנוחה
.ו( חזור על הסעיף האחרון תוך שימוש במשוואות הקינמטיקה
13_Energy_momentum/e_13_4_091.html
אנרגיה אלסטית
מכווצת קפיץ שקבוע הכח שלו הוא ,אורך הכיווץ הוא
.מסה
עד הגיעו למנוחה
.לאחר שחרורו ,נעה המסה על משטח אופקי למרחק של
מה מקדם החיכוך בין המסה למשטח
13_Energy_momentum/e_13_4_092.html
עבודה וקפיץ
מסה מונחת על גבי משטח מאונך בזוית
על המשטח מונח קפיץ שקבוע הקפיץ הוא .
המסה משוחררת ממנוחה ,הכיווץ המקסימלי של הקפיץ הוא
א .איזה מרחק נעה המסה עד לכייוץ המקסימלי של הקפיץ?
ב .מה מהירות המסה ברגע המגע עם הקפיץ?
ג .איזו עבודה נעשית על ידי הקפיץ?
13_Energy_momentum/e_13_4_093.html
קרון התפוזים
אדם עומד בקרון עם תפוזים ,ביחד יש להם מסה
האדם זורק תפוזים אחורה בקצב של תפוז לשניה במהירות
ביחס לקרון.
נתון שמהירות הקרון בהתחלה
מה השינוי במהירות לאחר זקירת תפוז יחיד?
מה תהיה תאוצת הקרון?
13_Energy_momentum/e_13_5_051.html
תנע ואנרגיה
מהי מהירות המסות לאחר שהמערכת המוראית בציור נעה 1מטר )המערכת מתחילה ממנוחה( ?
א.אין חיכוך.
ב.יש חיכוך וידוע כי מקדם החיכוך הקינטי שווה ל.0.2 -
נתון m1=4 kg, m2=6 kg :
13_Energy_momentum/e_13_5_052.html
תנע ואנרגיה
כוח של 30ניוטון מושך אופקית גוף שמסתו 30ק" ג .הגוף נע במהירות קבועה של 5מ\ש )המשטח לא חלק( .הכוח פועל במשך 10
שניות.
א.מהי עבודת הכוח המושך ? מהו הספקו ?
ב.מהי עבודת כוח החיכוך ? מהו מקדם החיכוך הקינטי ?
ג.איזה מרחק יעבור הגוף עד לעצירה מלאה ,מרגע שהופסקה פעולת הכוח ?
13_Energy_momentum/e_13_5_053.html
תנע ואנרגיה
כדור שמסתו 1ק" ג תלוי על חוט שאורכו 1.5מטרים .הכדור מוסט בזווית ) 300ראו ציור מצד שמאל של הקו המקווקו( ומשוחרר.
מסלול הכדור מופרע ע" י מסמר התקוע 1מטר מתחת לנקודת החיבור של החוט )ראו ציור מצד ימין של הקו המקווקו( .מהי הזווית
המכסימלית אליה יכול להגיע הכדור ?
בונוס :מה תהיה הזווית המכסימלית אם ידוע שעד להתנגשות פעל על הכדור כוח אופקי קבוע לכיוון ימין שגודלו 10ניוטון ?
13_Energy_momentum/e_13_5_054.html
תנע ואנרגיה
גוף מחליק על מישור משופע חלק .המצב ההתחלתי מוראה בציור )הגוף מתחיל ממנוחה( .בכמה ייתכווץ הקפיץ ?
נתון :מסת הגוף 4ק" ג ,קבוע הקפיץ 100ניוטון למטר.
13_Energy_momentum/e_13_5_055.html
תנע ואנרגיה
שתי מסות m1, m2נמצאות על משטח חלק .למסה הימנית הנמצאת במנוחה מחובר קפיץ רפוי בעל קבוע קפיץ .kהמסה השמאלית נעה
לעבר הימנית )והקפיץ( במהירות .vהקפיץ רפוי וחסר מסה .מהי ההתכווצות המכסימלית של הקפיץ ?
13_Energy_momentum/e_13_5_056.html
תנע ואנרגיה
גוף בעל מסה 0.2ק" ג נופל ממנוחה מגובה 2מטרים על קפיץ אנכי בעל קבוע קפיץ 16ניוטון\מטר .קפיץ חסר מסה ורפוי.
א.מהי מהירות המסה ממש לפני הפגיעה ?
ב.מהי ההתכווצות המקסימלית של הקפיץ ?
13_Energy_momentum/e_13_5_061.html
תנע ואנרגיה
מטוס טס במעגל אופקי במהירות משיקית של 480קמ"ש .אם הכנפיים מוטות בזוית של 40מעלות לאופק ,מהו רדיוס המעגל שהמטוס
מבצע? )הנח/הניחי כי הכוחות הפועלים על המטוס הם כוח הכובד וכוח העילוי הפועל על הכנפיים במאונך להם(.
13_Energy_momentum/e_13_5_062.html
תנע ואנרגיה
ב 1901דיאוולו רכב עם אופניים על מסלול מעגלי כפי שמראה ההודעה .הנח כי רדיוס המסלול הוא .2.7mמהי המהירות המינימלית
שצריכה להיות לדיאוולו בקצה העליון של המסלול בכדי שלא ייפול?
13_Energy_momentum/e_13_5_063.html
תנע ואנרגיה
כדור מתכת בעל מסה של 500גרם קשור לחבל )חסר מסה( באורך 70ס" מ הקשור בקצהו .הכדור משוחרר ממצב אופקי .בתחתית
המסלול שלו הוא פוגע בקובית ברזל במסה של 2.5ק"ג הנחה על משטח חסר חיכוך .ההתנגשות אלסטית.
א.מהי מהירות הכדור לפני ואחרי ההתנגשות?
ב.מהי מהירות הקופסא לפני ואחרי ההתנגשות?
13_Energy_momentum/e_13_5_064.html
תנע והתנגשויות
.קליע שמסתו 3.5קילוגרמים נורה אופקית לעבר שתי קוביות הנמצאות במנוחה על גבי שולחן חסר חיכוך
.מסת הקוביה הראשונה 1.2קילוגרמים ומסת הקוביה השניה 1.8קילוגרמים
הקליע עובר דרך הקוביה הראשונה ונתקע בשניה .בעוברו בקוביה הראשונה הוא מעניק לה מהירות של 0.63מטר לשניה ולאחר שהוא
.ננעץ בקוביה השניה מהירותה 1.4מטר לשניה
?א .מה מהירות הקליע לאחר שחדר דרך הקוביה הראשונה
?ב .מה מהירותו ההתחלתית של הקליע
ראו תרשים
13_Energy_momentum/e_13_5_065.html
תנע ואנרגיה
v0 עומד על הקרונית הנעה במהירותw אדם במשקל- בן, בהתחלה. יכולה לנוע ללא חיכוך על גבי מסילה אופקיתW קרונית במשקל
.ביחס למסילה
vrel בכמה משתנה מהירות הקרונית אם האדם רץ בכיוון הפוךלכיוון תנועת הקרונית כך שמהירותו ביחס לקרונית היא
13_Energy_momentum/e_13_5_066.html
Momentum
A body is thrown vertically up with initial speed of
with the influence of gravity. After
momentum changes by
.
1. What is the bodies mass?
2. What is the force acting on the body (use only the given)?
3. What is the velocity after
?
its
13_Energy_momentum/e_13_5_067.html
Momentum
A bullet with mass
and speed
is shot towards a ballistic pendulum with mass
will the pendulum rise after the collision? what is the percentage of the lost energy?
. how high
13_Energy_momentum/e_13_5_068.html
Momentum
A disk with mass
slides on a smooth horizontal surface with velocity
and collides with a second disk
with mass
which is at rest. After the collision the second disk moves with velocity
in a direction of
relative to the direction of the first disks initial motion.
1. What is the velocity of the first disk after the collision?
2. Was the collision totally elastic?
13_Energy_momentum/e_13_5_069.html
Momentum
a ball with mass
is thrown vertically up and blow up to three pieces at the top of its path. The first piece,
with mass
, moves up with velocity
and the second piece, whose mass is
, moves right with
a velocity of
?. What is the velocity of the third piece
13_Energy_momentum/e_13_5_080.html
עבודה של כוח משתנה
כוח משתנה פועל על מסה של 5ק"ג בעלת מהירות התחלתית 4מטר לשניה .הכוח תלוי בהעתק xומתנהג אחרת בשלושה איזורי פעולה
שונים:
א .מהי העבודה בכל אחד מאיזורי הפעולה השונים?
ב .מה השינוי באנרגיה לאחר 20מטר?
ג .מהי המהירות לאחר 20מטר?
13_Energy_momentum/e_13_7_001.html
התנגשות בדו מימד
דיסקה שמסתה 2mמחליקה על משטח אופקי חלק במהירות v0לאורך ציר ס ומתנגשת בדיסקה שניה שמסתה mהנמצאת במנוחה.
לאחר ההתנגשות נעה הדיסקה שמסתה mבמהירות 0.5v0בכיוון היוצר זווית בת 30מעלות עם כיוון תנועתה של הדיסקה הפוגעת
א .מהו וקטור המהירות של הדיסקה 2mלאחר ההתנגשות?
ב .האם ההתנגשות הייתה אלסטית לחלוטין?
13_Energy_momentum/e_13_7_002.html
שיווי משקל
נתון מוט שמשקלו 25ק"ג שנמצא בשיווי משקל )ראה ציור(.
א .מצא את המתיחות בחוט שמחבר את המוט לקיר
ב .מצא את הכוח שמפעיל הקיר על המוט
13_Energy_momentum/e_13_7_003.html
שיווי משקל
א .מצא את מרכז המסה של גוף בצורת ח' כאשר אורך כל צלע lומסת כל צלע . m
ב .מצא את מרכז המסה של משולש שווה צלעות כאשר אורך כל צלע lומסת כל צלע m
13_Energy_momentum/e_13_7_004.html
שיווי משקל
א .מצא את סה"כ המומנט סביב ציר הסיבוב )מסומן באפור(
13_Energy_momentum/e_13_8_084.html
תנע ואנרגיה
ר' ,שחקן בייסבול מצטיין ,הלך לשחק עם חבריו .כדור הבייסבול שמסתו [g] 100נע במהירות אופקית של [m/sec] 40לעבר המחבט
של ר' .לאחר שסופג חבטה עף הכדור במהירות של [m/sec] 50ובזווית של 37°מעל לאופק )לכיוון הנגדי ,ראה/י ציור(.
א.מהו המתקף שהופעל על הכדור בזמן החבטה ?
ב.בהנחה שהחבטה נמשכה ,[msec] 1.5מהו הכוח הממוצע שפעל על הכדור בזמן זה ?
ג.מהו המתקף שפעל על המחבט ?
ד.לאיזה מרחק עף הכדור אם הוא עוזב את המחבט בגובה של [m] 1מעל הקרקע ?
13_Energy_momentum/e_13_8_085.html
תנע ואנרגיה
מסה של [kg] 10הנמצאת במנוחה מתחלקת לשלושה חלקים ,הנעים לאחר החלוקה במישור .x-yחלק אחד מסתו m1 = 2 kgנע
במהירות של u1 = 4 m/secבכיוון ציר xוחלק שני מסתו ,m2 = 3 kgנע במהירות של u2 = 3 m/secובזווית של 30°ביחס לציר x
.מצא/י את מהירותו של החלק השלישי.
13_Energy_momentum/e_13_8_086.html
תנע ואנרגיה
.m/sec 3 במהירות שלkg 4 לפניה נעה באותו כיוון מסה של.m/sec 10 מחליקה על שולחן חסר חיכוך במהירות שלkg 2 מסה של
מה תהיה ההתכווצות המכסימלית של הקפיץ ? מה יהיו המהירויות של שתי.N/m 11 למסה זו מחובר קפיץ חסר מסה בעל קבוע של
? המסות לאחר שהקפיץ יחזור למצב רפוי והמסות ייפרדו
M =4 kg
m =2 kg
קפיץ חסר מסה
13_Energy_momentum/e_13_8_087.html
To push a 52-kg crate across a floor, a worker applies a force of 190 N, directed 22° below the horizontal.
As the crate moves 3.3 m, how much work is done on the crate by
(a) the worker,
(b) the force of gravity, and
(c) the normal force of the floor on the crate?
13_Energy_momentum/e_13_8_088.html
A l06-kg object is initially moving in a straight line with a speed of 51.3 m/s.
(a) If it is brought to a stop with a dece1eration of 1.97 m/s2, what force is required, what distance does the
object travel, and how much work is done by the force?
(b) Answer the same questions if the object's deceleration is 4.82 m/s2.
13_Energy_momentum/e_13_8_089.html
To push a 25-kg crate up a 27° incline, a worker exerts a force of 120 N, parallel to the incline.
As the crate slides 3.6 m, how much work is done on the crate by
(a) the worker,
(b) the force of gravity, and
(c) the normal force of the incline?
13_Energy_momentum/e_13_8_090.html
A 52.3-kg trunk is pushed 5.95 m at constant speed up a 28.0° incline by a constant horizontal force.
The coefficient of kinetic friction between the trunk and the incline is 0.19. Calculate the work done by
(a) the applied force and
(b) the force of gravity.
13_Energy_momentum/e_13_8_091.html
A 47.2-kg block of ice slides down an incline 1.62 m long and 0.902 m high. A worker pushes up on the ice
parallel to the incline so that it slides down at constant speed.
The coefficient of kinetic friction between the ice and the incline is 0.110. Find
(a) the force exerted by the worker,
(b) the work done by the worker on the block of ice, and
(c) the work done by gravity on the ice.
13_Energy_momentum/e_13_8_092.html
In a 100-person ski lift, a machine raises passengers averaging 667 N in weight a height of 152 m in 55.0 s, at
constant speed.
Find the power output of the motor, assuming no frictional losses.
13_Energy_momentum/e_13_8_093.html
What power is developed by a grinding machine whose wheel has a radius of 20.7 cm and runs at 2.53 rev/s
when the tool to be
sharpened is held against the wheel with a force of 180 N? The coefficient of friction between the tool and the
wheel is 0.32.
13_Energy_momentum/e_13_8_094.html
A fully loaded freight elevator has a total mass of 1220 kg. It is required to travel downward 54.5 m in 43.0 s.
The counter weight has a mass of 1380 kg. Find the power output, in hp, of the elevator motor.
Ignore the work required to start and stop the elevator; that is, assume that it travels at constant speed.
13_Energy_momentum/e_13_8_095.html
The figure below shows a spring with a pointer attached, hanging next to a scale graduated in millimeters.
Three different weights are hung from the spring, in turn, as shown.
(a) If all weight is removed from the spring, which mark on the scale will the pointer indicate?
(b) Find the weight W.
13_Energy_momentum/e_13_8_096.html
A spring has a force constant of 15.0 N/cm.
(a) How much work is required to extend the spring 7.60 mm from its relaxed position?
(b) How much work is needed to extend the spring an additional 7.60 mm?
13_Energy_momentum/e_13_8_097.html
An object of mass 0.675 kg on a frictionless table is attached to a string that passes through a hole in the table at
the center of the horizontal circle in which the object moves with constant speed.
(a) If the radius of the circle is 0.500 m and the speed is 10.0 m/s, compute the tension in the string.
(b) It is found that drawing an additional 0.200 m of the string down through the hole, thereby reducing the
radius of the circle to 0.300 m, has the effect of multiplying the original tension in the string by 4.63. Compute
the total work done by the string on the revolving object during the reduction of the radius.
13_Energy_momentum/e_13_8_098.html
A force acts on a 2.80-kg particle in such a way that the position of the particle as a function of time is given by
x = (3.0 m/s)t - (4.0 m/s2)t2 + (1.0 m/s3)t3.
(a) Find the work done by the force during the first 4.0 s.
(b) At what instantaneous rate is the force doing work on the particle at the instant t = 3.0 s?
13_Energy_momentum/e_13_8_099.html
A 3700-lb automobile (m = 1600 kg) starts from rest on a level road and gains a speed of 45 mi/h (= 72 km/h)
in 33 s.
(a) What is the kinetic energy of the auto at the end of the 33 s?
(b) What is the average net power delivered to the car during the 33-s interval?
(c) What is the instantaneous power at the end of the 33-s interval assuming that the acceleration was constant?
13_Energy_momentum/e_13_8_100.html
The figure below shows an arrangement of pulleys designed to facilitate the lifting of a heavy load L. Assume
that friction can be ignored everywhere and that the pulleys
to which the load is attached weigh a total of 20.0 lb. An 840-lb load is to be raised 12.0 ft.
(a) What is the minimum applied force F that can lift the load?
(b) How much work must be done against gravity in lifting the 840-lb load 12.0 ft?
(c) Through what distance must the applied force be exerted to lift the load 12.0 ft?
(d) How much work must be done by the applied force F to accomplish this task?
13_Energy_momentum/e_13_8_101.html
A 1380-kg block of granite is dragged up an incline at a con¬stant speed of 1.34 m/s by a steam winch (see
figure below).
The coefficient of kinetic friction between the block and the incline is 0.41. How much power must be supplied
by the winch?
13_Energy_momentum/e_13_8_102.html
An escalator joins one floor with another one 8.20 m above. The escalator is 13.3 m long and moves along its
length at 62.0 cm/s.
(a) What power must its motor deliver if it js required to carry a maximum of 100 persons per minute, of
average mass 75.0 kg?
(b) An 83.5-kg man walks up the escalator in 9.50 s. How much work does the motor do on him?
(c) If this man turned around at the middle and walked down the escalator so as to stay at the same level in
space, would the mo¬tor do work on him? If so, what power does it deliver for this purpose?
(d) Is there any (other?) way the man could walk along the escalator without consuming power from the motor?
13_Energy_momentum/e_13_8_103.html
(a) Estimate the work done by the force shown on the graph below in displacing a particle from x = 1 m to x =3
m.
Refine your method to see how close you can come to the exact answer of 6 J.
(b) The curve is given analytically by F = A/x2, where A = 9 N. m2. Show how to calculate the work by the
rules of integration.
13_Energy_momentum/e_13_8_104.html
A 0.550-kg projectile is launched from the edge of a cliff with an initial kinetic energy of 1550 J and at its
highest point. is 140 m above the launch point.
(a) What is the horizontal component of its velocity?
(b) What was the vertical component of its velocity just after launch?
(c) At one instant during its flight the vertical component of its velocity is found to be 65.0 m/s. At that time,
how far is it above or below the launch point?
13_Energy_momentum/e_13_8_105.html
A 263-g block is dropped onto a vertical spring with force constant k = 2.52 N/cm (see the figure below).
The block sticks to the spring, and the spring compresses 11.8 cm before coming momentarily to rest.
While the spring is being compressed, how much work is done
(a) by the force of gravity and
(b) by the spring?
(c) What was the speed of the block just before it hit the spring?
(d) If this initial speed of the block is doubled, what is the maximum compression of the spring? Ignore friction.
13_Energy_momentum/e_13_8_106.html
An object of mass m accelerates uniformly from rest to a speed vf in time tf.
(a) Show that the work done W on the object as a function of time t is W = m(vf/ tf)2 t2/2.
(b) As a function of time t, what is the instantaneous power delivered to the object?
13_Energy_momentum/e_13_8_107.html
A 220-lb man jumps out a window into a fire net 36 ft below. The net stretches 4.4 ft before bringing him to
rest and tossing him back into the air. What is the potential energy of the stretched net?
13_Energy_momentum/e_13_8_108.html
A frictionless roller-coaster car starts at point A in the figure below with speed vo. What will be the speed of
the car
(a) at point B,
(b) at point C, and
(c) at point D? Assume that the car can be considered a particle and that it always remains on the track.
13_Energy_momentum/e_13_8_109.html
The figure below shows a 7.94-kg stone resting on a spring. The spring is compressed 10.2 cm by the stone.
(a) Calculate the force constant of the spring.
(b) The stone is pushed down an additional 28.6 cm and released. How much potential energy is stored in the
spring just before the stone is released?
(c) How high above this new (lowest) position will the stone rise?
13_Energy_momentum/e_13_8_110.html
A 1.93-kg block is placed against a compressed spring on a frictionless 27.0° incline (see the figure below).
The spring, whose force constant is 20.8 N/cm, is compressed 18.7 cm, after which the block is released. How
far up the incline will the block go before coming to rest?
Measure the final position of the block with respect to its position just before being released.
13_Energy_momentum/e_13_8_111.html
A 2.14-kg block is dropped from a height of 43.6 cm onto a spring of force constant k = 18.6 N/cm, as shown in
the figure below.
Find the maximum distance the spring will be compressed.
13_Energy_momentum/e_13_8_112.html
Two children are playing a game in which they try to hit a small box on the floor with a marble fired from a
spring-loaded gun that is mounted on a table.
The target box is 2.20 m horizontally from the edge of the table; see the figure below. Bobby compresses the
spring 1.10 cm, but the marble falls 27.0 cm short.
How far should Rhoda compress the spring to score a hit?
13_Energy_momentum/e_13_8_113.html
A particle moves along the x axis through a region in which its potential energy U(x) varies as shown in the
figure below.
(a) Make a quantitative plot of the force F(x) that acts on the particle, us¬ing the same x axis scale as the figure.
(b) The particle has a (constant) mechanical energy E of 4.0 J. Sketch a plot of its kinetic energy K(x) directly
on this figure.
13_Energy_momentum/e_13_8_114.html
An ideal massless spring can be compressed 2.33 cm by a force of 268 N. A block whose mass is m = 3.18 kg
is released from rest at the top of the incline as shown in the figure below,
the angle of the incline being 32.0°. The block comes to rest momentarily after it has compressed this spring by
5.48 cm.
(a) How far has the block moved down the incline at this moment?
(b) What is the speed of the block just as it touches the spring?
13_Energy_momentum/e_13_8_115.html
A small block of mass m slides along the frictionless loop-the-loop track shown in the figure below.
(a) The block is released from rest at point P. What is the net force acting on it at point Q?
(b) At what height above the bottom of the loop should the block be released so that it is on the verge of losing
contact with the track at the top of the loop?
13_Energy_momentum/e_13_8_116.html
A block of mass m at the end of a string swings in a vertical circle of radius R under the influence of gravity
only.
Find the difference between the magnitudes of the tension in the string at the top of the loop and at the bottom
of the loop assuming the
block is always moving fast enough so that the string never goes slack.
13_Energy_momentum/e_13_8_117.html
A boy is seated on the top of a hemispherical mound of ice (see figure below). He is given a very small push
and starts sliding down the ice.
Show that he leaves the ice at a point whose height is 2R/3 if the ice is frictionless. (Hint: The normal force
vanishes as he leaves the ice.)
13_Energy_momentum/e_13_8_118.html
A particle is projected horizontally along the interior of a frictionless hemispherical bowl of radius r, which is
kept at rest (see figure below).
We wish to find the initial speed vo required for the particle to just reach the top of the bowl. Find vo as a
function of θo, the initial angular position of the particle.
13_Energy_momentum/e_13_8_119.html
3. A 4.88-kg object with a speed of 31.4 m/s strikes a steel plate at an angle of 42.0º and rebounds at the same
speed and angle.
What is the change (magnitude and direction) of the linear momentum of the object?
13_Energy_momentum/e_13_8_120.html
5. A ball of mass m and speed v strikes a wall perpendicularly and rebounds with undiminished speed.
(a) If the time of collision is t, what is the average force exerted by the ball on the wall?
(b) Evaluate this average force numerically for a rubber ball with mass 140 g moving at 7.8 rn/s; the duration of
the collision is 3.9 ms.
13_Energy_momentum/e_13_8_121.html
6. A golfer hits a golf ball, imparting to it an initial velocity of magnitude 52.2 m/s directed 30º above the
horizontal.
Assuming that the mass of the ball is 46.0 g and the club and ball are in contact for 1.20 ms, find
(a) the impulse imparted to the ball,
(b) the impulse imparted to the club, and
(c) the average force exerted on the ball by the club.
13_Energy_momentum/e_13_8_122.html
9. The figure below shows an approximate representation of force versus time during the collision of a 58-g
tennis ball with a wall.
The initial velocity of the ball is 32 m/s perpendicular to the wall; it rebounds with the same speed, also
perpendicular to the wall.
What is the value of Fmax, the maximum contact force during the collision?
13_Energy_momentum/e_13_8_123.html
11. A croquet ball with a mass 0.50 kg is struck by a mallet, receiving the impulse shown in the graph.
What is the ball's velocity just after the force has become zero?
13_Energy_momentum/e_13_8_124.html
14. A pellet gun fires ten 2.14-g pellets per second with a speed of 483 m/s. The pellets are stopped by a rigid
wall.
(a) Find the momentum of each pellet.
(b) Calculate the average force exerted by the stream of pellets on the wall.
(c) If each pellet is in contact with the wall for 1.25 ms, what is the average force exerted on the wall by each
pellet while in contact? Why is this so different from (b)?
13_Energy_momentum/e_13_8_125.html
18. A railroad flatcar of weight W can roll without friction along a straight horizontal track. Initially, a man of
weight w is standing on the car,
which is moving to the right with speed Vo. What is the change in velocity of the car if the man runs to the left
(Figure) so that his speed
relative to the car is vrel just before he jumps off at the left end?
13_Energy_momentum/e_13_8_126.html
20. The blocks in the figure below slide without friction. What is the velocity v of the l.6-kg block after the
collision?
13_Energy_momentum/e_13_8_127.html
22. Meteor Crater in Arizona (see Fig. below) is thought to have been formed by the impact of a meteorite with
the Earth some 20,000 years ago.
The mass of the meteorite is estimated to be 5 X 1010 kg and its speed to have been 7.2 km/s. What speed
would such a meteorite impart to the Earth in a head-on collision?
13_Energy_momentum/e_13_8_128.html
23. A 5.18-g bullet moving at 672 m/s strikes a 715-g wood~n block at rest on a frictionless surface.
The bullet emerges with its speed reduced to 428 m/s. Find the resulting speed of the block.
13_Energy_momentum/e_13_8_129.html
25. Two objects, A and B, collide. A has mass 2.0 kg, and B has mass 3.0 kg. The velocities before the collision
are viA = (15 m/s)i + (30 m/s)j
and viB = (-10 m/s)i + (5.0 m/s)j. After the collision, VfA = (- 6.0 m/s)i + (30 m/s)j. What is the final velocity
of B?
13_Energy_momentum/e_13_8_130.html
27. A barge with mass 1.50 X 105 kg is proceeding downriver at 6.20 m/s in heavy fog when it collides
broadside with a barge heading directly across the river; see figure below.
The second barge has mass 2.78 X 105 kg and was moving at 4.30 m/s. Immediately after impact, the second
barge finds its course deflected by 18.0° in the downriver direction and its speed increased to 5.10 m/s. The
river current was practically zero at the time of the accident.
What is the speed and direction of motion of the first barge immediately after the collision?
13_Energy_momentum/e_13_8_131.html
29. Two titanium spheres approach each other head-on with the same speed and collide elastically.
After the collision, one of the spheres, whose mass is 300 g, remains at rest. What is the mass of the other
sphere?
13_Energy_momentum/e_13_8_132.html
30. A cart with mass 342 g moving on a frictionless linear air¬track at an initial speed of 1.24 m/s strikes a
second cart of unknown mass at rest.
The collision between the carts is elastic. After the collision, the first cart continues in its original direction at
0.636 m/s.
(a) What is the mass of the second cart?
(b) What is its speed after impact?
13_Energy_momentum/e_13_8_133.html
31. An object of 2.0-kg mass makes an elastic collision with another object at rest and continues to move in the
original direction but with one-fourth of its original speed.
What is the mass of the struck object?
13_Energy_momentum/e_13_8_134.html
32. A railroad freight car weighing 31.8 tons and traveling at 5.20 ft/s overtakes one weighing 24.2 tons and
traveling at 2.90 ft/s in the same direction.
(a) Find the speeds of the cars after collision if the cars couple together.
(b) If instead, as is very unlikely, the collision is elastic, find the speeds of the cars after collision.
13_Energy_momentum/e_13_8_135.html
3. A 325-g ball with a speed v of 6.22 m/s strikes a wall at an angle θ of 33.0° and then rebounds with the same
speed and angle (Figure).
It is in contact with the wall for 10.4 ms.
(a) What impulse was experienced by the ball?
(b) What was the average force exerted by the ball on the wall?
13_Energy_momentum/e_13_8_136.html
4. It is well known that bullets and other missiles fired at Super¬man simply bounce off his chest as in figure.
Suppose that a gangster sprays Superman's chest with 3.0-g bullets at the rate of 100 bullets/min, the speed of
each bullet being 500 m/s.
Suppose too that the bullets rebound straight back with no loss in speed.
Find the average force exerted by the stream of bullets on Superman's chest.
13_Energy_momentum/e_13_8_137.html
5. During a violent thunderstorm, hail the size of marbles (diam¬eter = 1.0 cm) falls at a speed of 25 m/s. There
are estimated to be 120 hailstones per cubic meter of air.
Ignore the bounce of the hail on impact.
(a) What is the mass of each hailstone?
(b) What force is exerted by hail on a 10 m X 20 m flat roof during the storm? Assume that, as for ice, 1.0 cm3
of hail has a mass of 0.92 g.
13_Energy_momentum/e_13_8_138.html
2. Show that the ratio of the distances xl and x2 of two particles from their center of mass is the inverse ratio of
their masses; that is, xl/x2 = m2/m1.
13_Energy_momentum/e_13_8_139.html
3. A Plymouth car with a mass of 2210 kg is moving along a straight stretch of road at 105 km/h. It is followed
by a Ford with mass
2080 kg moving at 43.5 km/h.
How fast is the center of mass of the two cars moving?
13_Energy_momentum/e_13_8_140.html
4. Two skaters, one with mass 65 kg and the other with mass 42 kg, stand on an ice rink holding a pole with a
length of 9.7 m and a mass that is negligible.
Starting from the ends of the pole, the skaters pull themselves along the pole until they meet.
How far will the 42-kg skater move?
13_Energy_momentum/e_13_8_141.html
5. Two particles P and Q are initially at rest 1.64 m apart. P has a mass of 1.43 kg and Q a mass of 4.29 kg. P
and Q attract each other with a constant force
of 1.79 X 10-2 N. No external forces act on the system.
(a) Describe the motion of the center of mass.
(b) At what distance from P's original position do the particles collide?
13_Energy_momentum/e_13_8_142.html
6. A shell is fired from a gun with a muzzle velocity of 466 m/s, at an angle of 57.4º with the horizontal.
At the top of the trajectory, the shell explodes into two fragments of equal mass. One fragment, whose speed
immediately after the explosion is zero,
falls vertically. How far from the gun does the other fragment land, assuming level terrain?
13_Energy_momentum/e_13_8_143.html
10. Where is the center of mass of the three particles shown in the figure below?
13_Energy_momentum/e_13_8_144.html
13. Three thin rods each of length L are arranged in an inverted U, as shown in the figure below. The two rods
on the arms of the U each have mass M; the third rod has mass 3M. Where is the center of mass of the
assembly?
13_Energy_momentum/e_13_8_145.html
14. The figure below shows a composite slab with dimensions 22.0 cm X 13.0 cm X 2.80 cm. Half of the slab is
made of aluminum
(density = 2.70 g/cm3) and half of iron (density = 7.85 g/cm3), as shown. Where is the center of mass of the
slab?
13_Energy_momentum/e_13_8_146.html
16. A vessel at rest explodes, breaking into three pieces. Two pieces, one with twice the mass of the other, fly
off perpendicular to one another with the same speed of 31.4 m/ s.
The third piece has three times the mass of the lightest piece.
Find the magnitude and direction of its ve1ocity immediately after the explosion.
(Specify the direction by giving the angle from the line of travel of the least massive piece.)
13_Energy_momentum/e_13_8_147.html
18. A railway flat car is rushing along a level frictionless track at a speed of 45 m/s.
Mounted on the car and aimed forward is a cannon that fires 65-kg cannon balls with a muzzle speed of 625
m/s.
The total mass of the car, the cannon, and the large supply of cannon balls on the car is 3500 kg.
How many cannon balls must be fired to bring the car as close to rest as possible?
13_Energy_momentum/e_13_8_148.html
20. A rocket at rest in space, where there is virtual1y no gravity, has a mass of 2.55 X 105 kg, of which 1.81 X
105 kg is fuel.
The engine consumes fuel at the rate of 480 kg/s, and the exhaust speed is 3.27 km/s. The engine is fired for
250 s.
(a) Find the thrust of the rocket engine.
(b) What is the mass of the rocket after the engine burn?
(c) What is the final speed attained?
13_Energy_momentum/e_13_8_149.html
21. Consider a rocket at rest in empty space. What must be its mass ratio (ratio of initial to final mass) in order
that, after firing its engine, the rocket's speed is
(a) equal to the exhaust speed and
(b) equal to twice the exhaust speed?
13_Energy_momentum/e_13_8_150.html
23. A rocket of total mass 1.11 X 105 kg, of which 8.70 X 104 kg is fuel, is to be launched vertically.
The fuel will be burned at the constant rate of 820 kg/s.
Relative to the rocket, what is the minimum exhaust speed that allows liftoff at launch?
13_Energy_momentum/e_13_8_151.html
3. A uniform flexible chain of length L, with weight per unit length , passes over a small, frictionless peg; see
figure below.
It is released from a rest position with a length of chain x hanging from one side and a length L -x from the
other side.
Find the acceleration a as a function of x.
13_Energy_momentum/e_13_8_152.html
7. A 1400-kg cannon, which fires a 70.0-kg shell with a muzzle speed of 556 m/s, is set at an elevation angle of
39.0° above the horizontal.
The cannon is mounted on frictionless rails, so that it recoils freely.
(a) What is the speed of the shell with respect to the Earth?
(b) At what angle with the ground is the shell projected?
(Hint: The horizontal component of the momentum of the system remains unchanged as the gun is fired.)
13_Energy_momentum/e_13_8_153.html
10. A 5860-kg rocket is set for vertical firing. The exhaust speed is 1.17 km/s.
How much gas must be ejected each second to supply the thrust needed
(a) to overcome the weight of the rocket and
(b) to give the rocket an initial upward acceleration of 18.3 m/s2?
Note that gravity is present here as an external force.
13_Energy_momentum/e_13_8_154.html
9. A 2.9-ton weight falling through a distance of 6.5 ft drives a 0.50-ton pile 1.5 inches into the ground.
(a) Assuming that the weight - pile collision is completely inelastic, find the average force of resistance exerted
by the ground.
(b) Assuming the force of resistance by the ground remains constant at the value found in (a), how far into the
ground would the pile be driven if the collision were elastic?
(c) Which is more effective in this case, elastic or inelastic collisions?
13_Energy_momentum/e_13_8_155.html
10. Two 22.7-kg ice sleds are placed a short distance apart, one directly behind the other, as shown in Fig. 6-30.
A 3.63-kg cat, standing on one sled, jumps across to the other and im¬mediately back to the first.
Both jumps are made at a speed of 3.05 m/s relative to the sled the cat is standing on when the jump is made.
Find the final speeds of the two sleds.
13_Energy_momentum/e_13_8_156.html
11. Two vehicles A and B are traveling west and south, respectively, toward the same intersection where they
collide and lock together.
Before the collision, A (weight 2720 lb) is moving with a speed of 38.5 mi/h and B (weight 3640 lb) has a
speed of 58.0 mi/h.
Find the magnitude and direction of the velocity of the (interlocked) vehicles immediately after the collision.
13_Energy_momentum/e_13_8_157.html
12. Two balls A and B, having different but unknown masses, collide. A is initially at rest and B has a speed v.
After collision, B has a speed v/2 and moves at right angles to its original motion.
(a) Find the direction in which ball A moves after the collision.
(b) Can you determine the speed of A from the information given? Explain.
13_Energy_momentum/e_13_8_158.html
13. In a game of pool, the cue ball strikes another ball initially at rest. After the collision, the cue ball moves at
3.50 m/s along a line making an angle of 65.0°
with its original direction of motion. The second ball acquires a speed of 6.75 m/s.
Using momentum conservation, find
(a) the angle between the direction of motion of the second ball and the original direction of motion of the cue
ball and
(b) the original speed of the cue ball.
13_Energy_momentum/e_13_8_159.html
19. A 3.54-g bullet is fired horizontally at two blocks resting on a frictionless tabletop, as shown in Fig. 6-34a.
The bullet passes through the first block, with mass 1.22 kg, and embeds itself in the second, with mass 1.78
kg. Speeds of 0.630 m/s and 1.48 m/s,
respectively, are thereby imparted to the blocks, as shown in Fig. 6-34b. Neglecting the mass removed from the
first block by the bullet, find
(a) the speed of the bullet immediately after emerging from the first block and
(b) the original speed of the bullet.
13_Energy_momentum/e_13_8_160.html
20. A 2.0-kg block is released from rest at the top of a 22° frictionless inclined plane of height 0.65 m (Fig. 635).
At the bottom of the plane it collides with and sticks to a block of mass 3.5 kg. The two blocks together slide a
distance of 0.57 m
across a horizontal plane before coming to rest.
What is the coefficient of friction of the horizontal surface?
13_Energy_momentum/e_13_8_161.html
21. Two cars A and B slide on an icy road as they attempt to stop at a traffic light. The mass of A is 1100 kg
and the mass of B is 1400 kg.
The coefficient of kinetic friction between the locked wheels of both cars and the road is 0.130. Car A succeeds
in coming to rest at the light,
but car B cannot stop and rear-ends (collides with) car A. After the collision, A comes to rest 8.20 m ahead of
the impact point and B 6.10 m ahead: see Fig. 6-36.
Both drivers had their brakes locked throughout the incident.
(a) From the distances each car moved after the collision, find the speed of each car immediately after impact.
(b) Use conservation of momentum to find the speed at which car B struck car A.
On what grounds can the use of momentum conservation be criticized here?
13_Energy_momentum/e_13_8_162.html
2. Show that 1 rev/min = 0.105 rad/s.
13_Energy_momentum/e_13_8_163.html
3. The angle turned through by the flywheel of a generator during a time interval t is given by φ = at + bt3 - ct4,
where a, b, and c are constants.
What is the expression for its
(a) angular velocity and
(b) angular acceleration?
13_Energy_momentum/e_13_8_164.html
4. Our Sun is 2.3 X 104 ly (light-years) from the center of our Milky Way galaxy and is moving in a circle
around this center at a speed of 250 km/s.
(One light year is the distance that light travels in one year.)
(a) How long does it take the Sun to make one revolution about the galactic center?
(b) How many revolutions has the Sun completed since it was formed about 4.5 X 109 years ago?
13_Energy_momentum/e_13_8_165.html
5. A wheel rotates with an angular acceleration z given by z = 4at3 - 3bt2, where t is the time and a and b are
constants.
If the wheel has an initial angular velocity Wo, write the equations for
(a) the angular velocity and
(b) the angle turned through as functions of time.
13_Energy_momentum/e_13_8_166.html
6. What is the angular speed of
(a) the second hand,
(b) the minute hand, and
(c) the hour hand of a watch?
13_Energy_momentum/e_13_8_167.html
7. A good baseball pitcher can throw a baseball toward home plate at 85 mi/h with a spin of 1800 rev/min.
How many revolutions does the baseball make on its way to home plate?
For simplicity, assume that the 60-ft trajectory is a straight line.
13_Energy_momentum/e_13_8_168.html
While waiting to board a helicopter, you notice that the rotor's motion changed from 315 rev/min to 225
rev/min in 1.00 min.
(a) Find the average angular acceleration during the interval.
(b) Assuming that this acceleration remains constant, calculate how long it will take for the rotor to stop.
(c) How many revolutions will the rotor make after your second observation?
13_Energy_momentum/e_13_8_169.html
17. A certain wheel turns through 90 rev in 15 s, its angular speed at the end of the period being 10 rev/s.
(a) What was the angular speed of the wheel at the beginning of the 15-s interval, assuming constant angular
acceleration?
(b) How much time had elapsed between the time the wheel was at rest and the beginning of the 15-s interval?
13_Energy_momentum/e_13_8_170.html
24. A threaded rod with 12.0 turns/cm and diameter 1.18 cm is mounted horizontally.
A bar with a threaded hole to match the rod is screwed onto the rod; see Fig. 8-17.
The bar spins at 237 rev/min. How long will it take for the bar to move 1.50 cm along the rod?
13_Energy_momentum/e_13_8_171.html
25. (a) What is the angular speed about the polar axis of a point on the Earth's surface at a latitude of 40° N?
(b) What is the linear speed?
(c) What are the values for a point at the equator?
13_Energy_momentum/e_13_8_172.html
26. A gyroscope flywheel of radius 2.83 cm is accelerated from rest at 14.2 rad/s2 until its angular speed is
2760 rev/min.
(a) What is the tangential acceleration of a point on the rim of the flywheel?
(b) What is the radial acceleration of this point when the flywheel is spinning at full speed?
(c) Through what distance does a point on the rim move during the acceleration?
13_Energy_momentum/e_13_8_173.html
17. Fig. 9-43 shows a uniform block of mass, M and edge lengths a, b, and c.
Calculate its rotational inertia (moment of inertia) about an axis through one corner and perpendicular to the
large face of the block.
13_Energy_momentum/e_13_8_174.html
18. Calculate the rotational inertia of a meter stick, with mass 0.56 kg, about an axis perpendicular to the stick
and located at the 20-cm mark.
13_Energy_momentum/e_13_8_175.html
19. Two particles, each with mass m, are fastened to each other and to a rotation axis by two rods, each with
length L and mass M, as shown in Fig. 9-44.
The combination rotates around the rotation axis with angular velocity . Obtain an algebraic expression for
the rotational inertia of the combination about this axis.
13_Energy_momentum/e_13_8_176.html
12. Nine square holes have been cut in a fiat square plate, as shown in Fig. 9-62. The plate has edge length L,
and the holes have edge length a.
The holes are located at the centers of the small squares formed by dividing each side of the square into three
equal sections.
Find the rotational inertia for rotations about an axis perpendicular to the plate passing through its center.
13_Energy_momentum/e_13_8_177.html
The figure below shows a spring with a pointer attached, hanging next to a scale graduated in millimeters.
Three different weights are hung from the spring, in turn, as shown.
(a) If all weight is removed from the spring, which mark on the scale will the pointer indicate?
(b) Find the weight W.
13_Energy_momentum/e_13_8_178.html
The figure below shows an arrangement of pulleys designed to facilitate the lifting of a heavy load L. Assume
that friction can be ignored everywhere and that the pulleys
to which the load is attached weigh a total of 20.0 lb. An 840-lb load is to be raised 12.0 ft.
(a) What is the minimum applied force F that can lift the load?
(b) How much work must be done against gravity in lifting the 840-lb load 12.0 ft?
(c) Through what distance must the applied force be exerted to lift the load 12.0 ft?
(d) How much work must be done by the applied force F to accomplish this task?
13_Energy_momentum/e_13_8_179.html
A 1380-kg block of granite is dragged up an incline at a con¬stant speed of 1.34 m/s by a steam winch (see
figure below).
The coefficient of kinetic friction between the block and the incline is 0.41. How much power must be supplied
by the winch?
13_Energy_momentum/e_13_8_180.html
(a) Estimate the work done by the force shown on the graph below in displacing a particle from x = 1 m to x =3
m.
Refine your method to see how close you can come to the exact answer of 6 J.
(b) The curve is given analytically by F = A/x2, where A = 9 N. m2. Show how to calculate the work by the
rules of integration.
13_Energy_momentum/e_13_8_181.html
A 263-g block is dropped onto a vertical spring with force constant k = 2.52 N/cm (see the figure below).
The block sticks to the spring, and the spring compresses 11.8 cm before coming momentarily to rest.
While the spring is being compressed, how much work is done
(a) by the force of gravity and
(b) by the spring?
(c) What was the speed of the block just before it hit the spring?
(d) If this initial speed of the block is doubled, what is the maximum compression of the spring? Ignore friction.
13_Energy_momentum/e_13_8_182.html
A frictionless roller-coaster car starts at point A in the figure below with speed vo. What will be the speed of
the car
(a) at point B,
(b) at point C, and
(c) at point D? Assume that the car can be considered a particle and that it always remains on the track.
13_Energy_momentum/e_13_8_183.html
The figure below shows a 7.94-kg stone resting on a spring. The spring is compressed 10.2 cm by the stone.
(a) Calculate the force constant of the spring.
(b) The stone is pushed down an additional 28.6 cm and released. How much potential energy is stored in the
spring just before the stone is released?
(c) How high above this new (lowest) position will the stone rise?
13_Energy_momentum/e_13_8_184.html
A 1.93-kg block is placed against a compressed spring on a frictionless 27.0° incline (see the figure below).
The spring, whose force constant is 20.8 N/cm, is compressed 18.7 cm, after which the block is released. How
far up the incline will the block go before coming to rest?
Measure the final position of the block with respect to its position just before being released.
13_Energy_momentum/e_13_8_185.html
A 2.14-kg block is dropped from a height of 43.6 cm onto a spring of force constant k = 18.6 N/cm, as shown in
the figure below.
Find the maximum distance the spring will be compressed.
13_Energy_momentum/e_13_8_186.html
Two children are playing a game in which they try to hit a small box on the floor with a marble fired from a
spring-loaded gun that is mounted on a table.
The target box is 2.20 m horizontally from the edge of the table; see the figure below. Bobby compresses the
spring 1.10 cm, but the marble falls 27.0 cm short.
How far should Rhoda compress the spring to score a hit?
13_Energy_momentum/e_13_8_187.html
A particle moves along the x axis through a region in which its potential energy U(x) varies as shown in the
figure below.
(a) Make a quantitative plot of the force F(x) that acts on the particle, us¬ing the same x axis scale as the figure.
(b) The particle has a (constant) mechanical energy E of 4.0 J. Sketch a plot of its kinetic energy K(x) directly
on this figure.
13_Energy_momentum/e_13_8_188.html
An ideal massless spring can be compressed 2.33 cm by a force of 268 N. A block whose mass is m = 3.18 kg
is released from rest at the top of the incline as shown in the figure below,
the angle of the incline being 32.0°. The block comes to rest momentarily after it has compressed this spring by
5.48 cm.
(a) How far has the block moved down the incline at this moment?
(b) What is the speed of the block just as it touches the spring?
13_Energy_momentum/e_13_8_189.html
A small block of mass m slides along the frictionless loop-the-loop track shown in the figure below.
(a) The block is released from rest at point P. What is the net force acting on it at point Q?
(b) At what height above the bottom of the loop should the block be released so that it is on the verge of losing
contact with the track at the top of the loop?
13_Energy_momentum/e_13_8_190.html
A boy is seated on the top of a hemispherical mound of ice (see figure below). He is given a very small push
and starts sliding down the ice.
Show that he leaves the ice at a point whose height is 2R/3 if the ice is frictionless. (Hint: The normal force
vanishes as he leaves the ice.)
13_Energy_momentum/e_13_8_191.html
A particle is projected horizontally along the interior of a frictionless hemispherical bowl of radius r, which is
kept at rest (see figure below).
We wish to find the initial speed vo required for the particle to just reach the top of the bowl. Find vo as a
function of θo, the initial angular position of the particle.
19_Vibrations/e_19_1_011.html
Oscillations
Find the frequency of small oscillations of a particle (mass
.
) near the equilibrium in the potential
19_Vibrations/e_19_1_012.html
Oscillations
A particle is in the stable equilibrium in the potential energy
. Suddenly it gets a
small addition of energy
. Assuming that the oscillations are small find the frequency and amplitude.
19_Vibrations/e_19_1_013.html
Oscillations
A particle moves in a well of the shape
without friction (potential energy
motion can be described as a harmonic oscillation and find the frequency.
). Show that the
19_Vibrations/e_19_1_014.html
Oscillations
A body with the mass
is attached to a spring (spring constant ). The other end of the spring is brought into
the motion according to the law
. The friction acting on the body is
. Show that
the body can oscillate with a constant amplitude and find this amplitude.
19_Vibrations/e_19_1_015.html
Oscillations
Find the motion of an oscillator with the natural frequency
,
.
and mass
under the force
19_Vibrations/e_19_1_016.html
Oscillations
Find the frequency of small radial oscillations of a particle with a mass
central potential
.
19_Vibrations/e_19_1_017.html
near a circular orbit
in a
Oscillations
Find the frequency of small radial oscillations of a particle with a mass
central potential
.
near a circular orbit
in a
19_Vibrations/e_19_1_018.html
Oscillations
Find the average power of the external force
for the oscillator:
.
19_Vibrations/e_19_1_019.html
Oscillations
A bead of the mass
can move on a straight wire along
axis without friction. The bead is connected to two
springs (spring constant , length ). The springs are connected to the points
and
,
,
respectively. Initially the bead starts moving from
with the velocity . Assuming that the the oscillations
are small, find their frequency and amplitude.
19_Vibrations/e_19_1_020.html
Oscillations
A particle is moving in the magnetic field
. Find
.
,
, and electric field
,
19_Vibrations/e_19_1_021.html
Oscillations
A particle with the mass
is moving in
plane with the potential energy
the particle is in the position
and its velocity is
. Find the trajectory.
. Initially
19_Vibrations/e_19_1_022.html
Oscillations
A satellite (mass ) is moving along a strait line
between two stars of mass
.
The distance from each star to the line is (at the nearest point).
1. What is the condition for having harmonic oscillations?
2. Find the frequency of small oscillations.
19_Vibrations/e_19_1_023.html
Oscillations
A particle is moving in the magnetic field
. Find
,
, and electric field
,
.
19_Vibrations/e_19_1_024.html
תנודות הרמוניות
וכן המסה השמאלית,'K ( מונחות במערכת אופקית )ללא חיכוך( כך שבין המסות מחבר קפיץ בעל קבועm שתי מסות זהות )מסה
מחוברת לקיר השמאלי עם קפיץ בעל קבוע ,Kוהמסה הימנית לקיר הימני עם קפיץ זהה )קבוע .(Kהניחו כי אורך כל קפיץ במנוחה הוא
.L
רשמו את משוואות התנועה עבור תנודות קטנות ,ומצאו את הפתרון הכללי.
19_Vibrations/e_19_3_101.html
תנודות
מסיטים את המסה ימינה בשיעור
דיסקה בעלת מסה ורדיוס מחוברת לקפיץ בעל קבוע קפיץ .בזמן
ומשחררים ממנוחה .נתון כי הדיסקה מבצעת גלגול ללא החלקה לכל אורך תנועתה.
א .מהי תדירות התנודות שמבצעת הדיסקה?
(?
ב .מהם ההעתק המהירות והתאוצה כתלות בזמן )
עבורו לא תחליק הדיסקה?
ג .מה גודלו המינימלי של מקדם החכוך הסטטי
19_Vibrations/e_19_3_102.html
תנודות
.הגוף הנקודתי מחובר לעגלה בקפיץ בעל
חופשי לנוע אופקית ללא חיכוך על עגלה שמסתה
גוף נקודתי שמסתו
קבוע .העגלה מונחת על משטח אופקי חסר חיכוך .מותחים את הקפיץ ומשחררים את המערכת ממנוחה.
א .מהי תדירות התנודות שיבצעו הגוף הנקודתי והעגלה?
?
ו-
ב .מהי התדירות בגבולות
19_Vibrations/e_19_3_103.html
תנודות
המחובר בקצהו )ראה/י שרטוט( .בזמן
וגוף נקודתי שמסתו
מטוטלת עשויה מוט אחיד בעל אורך ומסה
.ניתן להניח כי הזוית קטנה.
המטוטלת נמצאת בנקודת שווי המשקל ומעניקים לה מהירות זויתית
א .מהי תדירות התנודות ?
ב .מהי הזוית ,המהירות הזויתית והתאוצה הזויתית כתלות בזמן )
(?
19_Vibrations/e_19_3_104.html
תדירות תנודות קטנות של מימן ברומי
האנרגיה הפוטנציאלית של מולקולת מימן ברומי ) (HBrניתנת ע"י הנוסחא:
כאשר ,
ו-
קבועים.
.1מהו הכח הפועל בין האטומים?
.2מהו מרחק השיווי משקל?
.3מהי תדירות התנודות הקטנות של המולקולה סביב שיווי המשקל?
19_Vibrations/e_19_4_001.html
תנודות
מצא/י את
נתונים שני גופים אחד מעל לשני כמתואר באיור .מסת הגוף העליון היא 1.22ק"ג ,ומסת הגוף השני היא
האמפליטודה המכסימלית בה ינוע M2כך שהגוף העליון לא יחליק.
19_Vibrations/e_19_4_002.html
בולם זעזועים
בולם זעזועים ברכב עשוי מקפיץ הנמצא בתוך בוכנה המלאה בשמן הידראולי .כוח החיכוך נתון ע"י
מקדם הצמיגות של השמן הוא
.
,מסת הרכב היא 0.823טון ,מקדם הקפיץ הוא .k=35000 N/mהרכב נכנס
למהמורה בעומק .10cm
א( מה תהיה ההתכווצות המכסימלית של הקפיץ?
ב( תוך כמה זמן יפסיק הרכב להתנדנד )מבחינה מעשית(?
ג( מה תדר התנודות? כמה תנודות יעשה הרכב עד לעצירתו?
ד( מצא/י את מהירות התנודות כפונקציה של הזמן.
19_Vibrations/e_19_4_003.html
תנודות הרמוניות
א( נתון כדור המקפץ על פני הקרקע בקפיצות אלסטיות לחלוטין ,כלומר ללא איבוד אנרגיה )הוא חוזר לאותו גובה כל פעם( .האם
הכדור מבצע תנועה הרמונית? הוכח/י.
ב( נתונה מטוטלת המתנדנדת בזמן מחזור של .T=0.5 sמה צריך להיות אורך המטוטלת כך שגם על פני הירח יהיה לה את אותו זמן
מחזור? .gm=1.67 m/s2
19_Vibrations/e_19_4_004.html
תנודות הרמוניות ושכר הולם
מפעילת מעלית רושמת את זמן עבודתה באמצעות דפיקת כרטיס בשעון זמן .זוהי מעלית ישנה מאוד ,ושעון הזמן שנמצא בה הוא שעון
סבא עם מטוטלת .ההאצה וההאטה של המעלית חלקות לחלוטין וקבועות ,ובעלות אותו ערך מוחלט )קטן יותר מ (g-בין אם המעלית
עולה או יורדת .אם משלמים למפעילת המעלית לפי שעה ,האם משלמים לה יותר מדי או פחות מדי?
רמז :היא עובדת חברת כוח אדם.
19_Vibrations/e_19_4_005.html
מולקולה דו-אטומית
נתונה מולקולה דו אטומית המורכבת משני אטומים בעלי מסה של .m
הקשר הבינאטומי התון על ידי הפוטנציאל:
א( מהי נקודת שיווי המשקל של המולקולה?
ב( מהי המסה המצומצמת בבעיה? )ראו ע"מ 332פרק 15ברזניק(
ג( הראה/י כי עבור תנודות קטנות סביב נקודת שיווי המשקל ,ניתן לפתח את הכוח לטור טיילור בסדר ,Iכך שהמולקולה תנדנד בתנועה
הרמונית פשוטה.
ד( מהו זמן המחזור של התנודה?
19_Vibrations/e_19_4_006.html
קפיצים
קפיץ "קשה" מוגדר כקפיץ בעל קבוע kגדול ,וקפיץ "רך" מוגדר כקפיץ בעל קבוע kקטן.
בולמי זעזועים של רכב )לפחות בדגמים ישנים( עשויים קפיצים .מה הם היתרונות והחסרונות של בולמי זעזועים רכים וקשים? הכוונה
היא לתחושת אי הנוחות של הנוסע – משרעת התנודה ,זמן מחזור התנודה וכמות הטלטולים.
19_Vibrations/e_19_5_001.html
תנודות
מגש שמסתו 4Kgמונח על קפיץ אנכי ,שקבוע הקפיץ שלו .100N/m
מגובה 1mנופל עליו כדור שמסתו 1Kgומתנגש בו התנגשות פלסטית .
.1
.2
.3
.4
.5
מהי משרעת התנודות?
מהו זמן המחזור של התנודות?
מהו הביטוי להעתק כפונקציה של הזמן?
מהו הביטוי למהירות כפונקציה של הזמן?
מהי האנרגיה הכללית של התנועה ביחס לנקודת שיווי המשקל?
19_Vibrations/e_19_5_002.html
תנודות
בול שמסתו M=0.5kgנמצא על שולחן אופקי חלק ומחובר אל קצהו הימני של קביץ שקבועו .k=40N/mאורכו הרפוי של הקפיץ
הוא .l=0.6m
כח אפקי קבוע שגודלו P=20Nמתחיל לפעול על הבול כאשר הוא נמצא במנוחה בנקודה ,Aהמרוחקת l0=0.6mמהקיר האנכי שאליו
מחובר הקצה השמאלי של הקפיץ ,כנראה בתרשים.
.1מהי מהירות הגוף בעוברו בנקודה Bהנמצאת במרחק d=0.25mמימין לנקודה ?A
.2בנקודה Bמפסיק הכח Pלפעול והגוף ממשיך לבצע תנודות אפקיות .לאיזה מרחק מינימלי מהקיר האנכי מגיע הבול במהלך
תנודותיו?
.3כמה זמן חולף מרגע הפסקת פעולת הכח ,Pעד הפעם הראשונה בה מגיע הגוף אל הנקודה הקרובה ביותר אל הקיר האנכי?
19_Vibrations/e_19_5_003.html
תנודות
גוף שמסתו 1kgקשור משני צדדיו לשני קפיצים זהים שקבוע הקפיץ שלהם 200N/mהגוף מוסט 20cmשמאלה מנקודת שווי המשקל
ומשוחרר.
.1
.2
.3
.4
מהי תדירות התנועה?
מהי האנרגיה הכללית של הגוף?
?x(t
תוף כמה זמן יגיע הגוף לנקודה הנמצאת 5cmמימין לנקודת שווי המשקל?
19_Vibrations/e_19_5_054.html
תנודות
גוף שמסתו m=0.5kgנמצא על משטח אופקי חלק ומחובר אל קצהו של קפיץ אופקי שקבועו .k=8N/m
קצהו השני של הקפיץ מחוברר לקיר אנכי .ברגע t=0מעניקים לגוף מהירות התחלתית v0=0.8m/Secבכיוון החיובי של ציר ,x
כאשר הגוף נמצא בנקודת שווי המשקל.
.1
.2
.3
.4
.5
מה משרעת התנודות?
רשום ביטויים מפורשים עבור העתק הגוף מנקודת שווי המשקל ועבור מהירותו הרגעית כפונקציות של הזמן.
רשום ביטויים מפורשים עבור האנרגיה הקינטית ) Ek(tועבור האנרגיה הפוטנציאלית האלסטית).Ep(t
הראה שסכום האנרגיות הוא גודל קבוע.
בניסוי אחר אותה מערכת תלויה באופן אנכי מהתקרה .ברגע ,t=0כשהגוף בנקודת שווי המשקל ,מעניקים לו מהירות התחלתית
v0=0.8m/Secהמכוונת אנכית מעלה )הכיוון החיובי של ציר ( .חזור על סעיף ב' עבור הניסוי הנוכחי.
19_Vibrations/e_19_5_055.html
תנודות
בול שמסתו M=0.5kgנמצא על שולחן אופקי חלק ומחובר אל קצהו הימני של קביץ שקבועו .k=40N/mאורכו הרפוי של הקפיץ
הוא .l=0.6m
כח אפקי קבוע שגודלו P=20Nמתחיל לפעול על הבול כאשר הוא נמצא במנוחה בנקודה ,Aהמרוחקת l0=0.6mמהקיר האנכי שאליו
מחובר הקצה השמאלי של הקפיץ ,כנראה בתרשים.
.1מהי מהירות הגוף בעוברו בנקודה Bהנמצאת במרחק d=0.25mמימין לנקודה ?A
.2בנקודה Bמפסיק הכח Pלפעול והגוף ממשיך לבצע תנודות אפקיות .לאיזה מרחק מינימלי מהקיר האנכי מגיע הבול במהלך
תנודותיו?
.3כמה זמן חולף מרגע הפסקת פעולת הכח ,Pעד הפעם הראשונה בה מגיע הגוף אל הנקודה הקרובה ביותר אל הקיר האנכי?
19_Vibrations/e_19_5_056.html
תנודות
גוף שמסתו 1kgקשור משני צדדיו לשני קפיצים זהים שקבוע הקפיץ שלהם 200N/mהגוף מוסט 20cmשמאלה מנקודת שווי המשקל
ומשוחרר.
.1
.2
.3
.4
מהי תדירות התנועה?
מהי האנרגיה הכללית של הגוף?
?x(t
תוף כמה זמן יגיע הגוף לנקודה הנמצאת 5cmמימין לנקודת שווי המשקל?
19_Vibrations/e_19_5_123.html
תנודות
מסה m2=2 kgקשורה למסה m1=1kgע" י חוט דק .המסה m1קשורה לקפיץ אנכי )ראו ציור( שקבוע קפיצו .k=100N/mהמערכת
נמצאת במנוחה ואז נקרע החוט.
א.מהו המיקום ההתחלתי של התנועה יחסית למצב הרפוי של הקפיץ ?
ב.מהו מיקום נקודת שיווי המשקל יחסית למצב הרפוי של הקפיץ ? מהי האמפליטודה של התנועה ההרמונית ?
ג .מצאו ביטוי למיקום הגוף כפונקציה של הזמן )מרגע היקרע החוט(.
19_Vibrations/e_19_7_001.html
תנועה הרמונית
גוף נע בתנועה הרמונית שמשרעתה 10ס"מ וזמן המחזור שלה 5שניות
הגוף התחיל לנוע מהנקודה הרחוקה ביותר מנקודת שיווי משקל
א .מצא ביטוי להעתק ,מהירות ,ותאוצה כפונקציה של הזמן
ב .מהם העתק והמהירות בזמן t=1
19_Vibrations/e_19_7_002.html
תנועה הרמונית
מיקומו של גוף נתון ע"י הביטוי
א .כתוב ביטוי למהירות ולתאוצה כפונקציה של הזמן
ב .לאחר פרק זמן T/6הגוף נמצא בערכים הבאים:
חשב את המשרעת Aאת המהירות הזוויתית ואת X0
ג .מה תהיה מהירותו ותאוצתו של הגוף בעוברו בנקודה
19_Vibrations/e_19_7_003.html
תנועה הרמונית
עבור מטוטלת הרמונית ידוע שאורך החוט 2מטר.
ב t=0ידוע ש:
א .מצא את האמפליטודה של הזווית ושל ההעתק
ב .רשום משוואות עבור
19_Vibrations/e_19_7_004.html
קפיץ
גוף שמסתו 1ק"ג קשור משני צדדיו לשני קפיצים זהים שקבוע הקפיץ שלהם 200ניוטון למטר.
הגוף מוסט 20ס"מ שמאלה מנקודת שיווי המשקל ונעזב
א .מהי תדירות התנועה
ב .מהי האנרגיה הכללית של הגוף
ג .מצא את )x(t
ד .תוך כמה זמן יגיע הגוף לנקודה הנמצאת 5ס"מ מימין לנקודת שיווי משקל
19_Vibrations/e_19_8_121.html
תנודות
מסה של 100גרם קשורה לחוט באורך 50ס"מ הקשור לתקרה .מסיטים את המסה ב 100-יחסית לאנך )ראו ציור( ומשחררים )רגע
השיחרור הוא .(t=0
א.השתכנעו שעבור זווית קטנה זו התנועה היא בקירוב הרמונית .מהו זמן המחזור ?
ב.מצאו את ) – q(tהזווית )ברדיאנים( בזמן .tגזרו מביטוי זה את המהירות הזוויתית ואת התאוצה הזוויתית.
ג.תוך כמה זמן תגיע המשקולת לגובה הנמוך ביותר ?
ד.מהי מהירותה הזוויתית בנקודה זו ?
19_Vibrations/e_19_8_122.html
תנודות
כדור באולינג במסה 3ק"ג מונח על ריצפה חלקה וקשור לקפיץ כמוראה .קבוע הקפיץ 111ניטון\מטר .כדור באולינג זהה המגיע
במהירות 10מ/ש מתנגש בו אלסטית )זמן ההתנגשות זניח(.
א.מהי האמפליטודה של התנועה ? A
ב.מהו זמן מחזור התנועה ?
ג.כתבו את ) – x(tמיקום הכדור הקשור מרגע הפגיעה ואילך.
ד.תוך כמהזמן יגיע הכדור למרחק של A/2מנקודת שיווי המשקל )בפעם הראשונה( ?
19_Vibrations/e_19_8_123.html
תנודות
מסה m2=2 kgקשורה למסה m1=1kgע" י חוט דקm1 .קשורהלקפיץ אנכי )ראו ציור( שקבוע קפיצו .k=100N/mהמערכת נמצאת
במנוחה ואז נקרע החוט.
א.מהו המיקום ההתחלתי של התנועה יחסית למצב הרפוי של הקפיץ ?
ב.מהו מיקום נקודת שיווי המשקל יחסית למצב הרפוי של הקפיץ ? מהי האמפליטודה של התנועה ההרמונית ?
ג .מצאו ביטוי למיקום הגוף כפונקציה של הזמן )מרגע היקרע החוט(.
ד.מדוע התנועה ההרמונית נקראת תנועה הרמונית פשוטה ?
19_Vibrations/e_19_8_124.html
תנודות
: ע" פ הציורkA = kB = 500N/m להם, מחוברות לשני קפיצים זהיםMA = MB = 1 kg שמסתןB - וA שתי מסות זהות
לאחר השחרור. שמאלה ומשחררים אותהx = 10 cm מרחק שלMA מזיזים את המסה.במצב ההתחלתי שני הקפיצים נמצאים במנוחה
.מתנגשות המסות התנגשות פלסטית ונעות כגוף אחד
? MB במסהMA כעבור כמה זמן תתנגש המסה.א
? בעת הפגיעהMA מה תהיה מהירותה של.ב
? כמה זמן יחלוף מהפגיעה ועד לנקודה בה ייעצרו המסות.ג
? מהו זמן המחזור של תנועת המסות לאחר הפגיעה.ד
שמאלה מנקודת שוויcm 1 עד שנקודת המגע בין המסות תחלוף על פני נקודה הנמצאתMA כמה זמן יחלוף מעת שחרור המסה.ה
? המשקל
? מהו המרחק המקסימלי שתגיע נקודה זו מנקודת שווי המשקל.ו
22_Rigid_body/e_22_1_011.html
Rigid Body
A disk of the mass
and radius
is connected to two parallel identical springs (
, ) as shown in the figure.
Find the frequency of rotational oscillations around the center of the disk.
22_Rigid_body/e_22_1_012.html
Rigid Body
A ball of the radius rotates with the angular velocity
around the horizontal axis passing through the centerof-mass. The ball is carefully put on a horizontal surface with the friction coefficient . Find
.
22_Rigid_body/e_22_1_013.html
Rigid Body
A cylinder of the radius is rolling without sliding inside a larger cylinder of the radius
figure (vertical cross-section).
as shown in the
a) Find the minimal angular frequency in the lowest point which allows to reach the highest point. b) Find the
frequency of small oscillations near the equilibrium.
22_Rigid_body/e_22_1_014.html
Rigid Body
A homogeneous cube is rotating around the axis passing through the center-of-mass. Describe qualitatively the
motion of the axis depending on the angle of the axis with the normal to the cube side.
22_Rigid_body/e_22_1_015.html
Rigid Body
A hollow cylinder and a solid cylinder of the same radius start rolling simultaneously without sliding down the
same slope from the same height. What is the ratio of the final velocities ? Which one comes to the end of the
slope earlier and what is the ratio of times ?
22_Rigid_body/e_22_1_016.html
Rigid Body
Two identical masses
connected by a massless rod of the length are moving on a circular orbit
around the Earth. The attraction force between the Earth and a point mass is
, where
is
the Earth mass and
is a universal constant. Find the frequency of small rotational oscillations of the system
(masses on the rod) around the center-of-mass.
22_Rigid_body/e_22_1_017.html
Rigid Body
A car engine is applying a torque to a wheel. The wheel mass is , radius is and the moment of inertia with
respect to the center is . The coefficient of the static friction with the road is . What is the maximum torque
which can be applied without making the wheel slide ?
22_Rigid_body/e_22_1_018.html
Rigid Body
A bobbin is moved by pulling a thread which is winded on the inner cylinder. The outer radius is , the inner
radius is , the bobbin mass is , the friction coefficient is . What is the maximal force
for which the
bobbin rolls without friction ? What is the bobbin velocity after it moves by the distance from the rest ?
22_Rigid_body/e_22_1_019.html
Rigid Body
Six identical point masses
,
are in the positions
,
,
,
. The anglular velocity vector
,
. Find
.
22_Rigid_body/e_22_1_020.html
Rigid Body
Three identical disks with the mass
and radius each are connected so that they have the common center
and their planes are mutually perpendicular. Find the moment of inertia relative to an arbitrary axis passing
through the center.
22_Rigid_body/e_22_1_021.html
Rigid Body
Two identical particles of the mass
are connected to the two ends of a rigid massless rod of the length .
The system initially rotates around the center-of-mass with the angular velocity . One of the particles
encounters a third one (with the same mass) at rest, which momentarily sticks to it. What is the angular velocity
of the rotation around the center-of-mass after the collision ? (No gravity.)
22_Rigid_body/e_22_1_022.html
Rigid Body
A homogeneous ball (mass , radius ) is struck by a horisontal force
in the point which is above the center
by the distance
. The time of force action is very small, but
is nonzero. Find the velocity of the centerof-mass and the angular velocity of the ball around the axis which goes through the center-of-mass, if a) there is
no friction with the floor, and b) if the friction prevents sliding. (
)
22_Rigid_body/e_22_1_023.html
Rigid Body
A massless dancer holds two identical masses ( ) at a distance
from the body
and spinning at a constant angular velocity
.
Suddenly the dancer move the masses to the distance of
from the body.
What will be the the new angular velocity?
22_Rigid_body/e_22_1_024.html
Rigid Body
Two bodies of masses
and
move under the action of their mutual gravitation.
Let
and
be the position vectors in a space-fixed coordinate system, and
Find the equation of motion for ,
and in the center-of-mass system.
.
22_Rigid_body/e_22_1_025.html
Rigid Body
Find the center of mass of a solid cone of mass
whose top radius is
and its height is
.
22_Rigid_body/e_22_1_026.html
Rigid Body
A stick of mass
and lenght
is initialy at rest in a vertical position on a frictionless table.
if the stick start falling, find the speed of the center of mass as a function of the angle that the stick makes
with the vertical.
22_Rigid_body/e_22_1_027.html
Rigid Body
Find the moment of inertia of a disk of radius
and mass
with respect to an axis that passing at the edge of the disk and
perpendicular to its plane.
22_Rigid_body/e_22_1_028.html
Rigid Body
A thin cylinder of radius mass
is rolling inside a biger cylinder of radius
1. Find the kinetic energy of the small cylinder.
2. Find the frequency of small oscillations.
.
22_Rigid_body/e_22_1_029.html
Rigid Body
Find the center of mass for the following bodies:
1. A paraboloid
between
and
2. A disk of radius
with a uniform surface density
from the center of the first circle.
with a uniform density .
which has a circular hole of radius
at a distance
22_Rigid_body/e_22_1_030.html
Rigid Body
Find the moment of inertia for the following bodies:
1. A cylinder of mass
radius
and height
rotating about its symmetry axis.
2. A cylinder of mass
radius
and height
rotating about an axis parallel to the symmetry axis and
tangent to the surface.
3. A thin square of side
with its diagonal along
-axis (mass
22_Rigid_body/e_22_1_031.html
Rigid Body
Prove the following moment of inertia for the following bodies:
). Find
,
and
.
22_Rigid_body/e_22_1_032.html
Rigid Body
A billiard ball ( mass
, radius ) is placed on a table with kinetic friction coefficient .
At
the ball is struck (for an infinitesimal duration
such that
is nonzero) horizontally by a cue at
a height from the table and start moving in a velocity .
1. What is the final speed of the center of mass of the ball?
2. At what height (from the center of mass) one has to strike the ball so that rolling motion starts immediately?
22_Rigid_body/e_22_1_033.html
Rigid Body
A uniform thin rigid rod of mass
is supported by two rotating rollers
whose axes are separated by a fixed distance . The rod is initially placed
at rest asymmetrically.
1. Assume that the rollers rotate in opposite directions. The coefficient
of kinetic friction between the bar and the rollers is . Write the
equation of motion of the bar and solve for the displacement
of the center of the bar from roller (1),
assuming
and
.
2. Now consider the case in which the directions of rotation of the rollers
are reversed, calculate the displacement
,assuming
and
.
22_Rigid_body/e_22_1_034.html
Rigid Body
A uniform cylinder starts to slide without friction on a slope (angle
with the horizon).
When the cylinder passes a distance
the slope gets rough with a friction coefficient .
What will be the speed of the cylinder when the slipping ends?
22_Rigid_body/e_22_1_035.html
Rigid Body
A uniform rod of mass
and lenght is free to move in a vertically about an axis that pass
at a point
from the top. A bullet of mass
hits the rod horizontally at the top with a speed .
What is the maximal angle for which the rod will rotate?
22_Rigid_body/e_22_1_036.html
Inertia Tensor
Find the inertia tensor of a uniform thin board with dimensions a*b.
22_Rigid_body/e_22_1_037.html
Moment of Inertia
1) Find the moment of inertia tensor of a uniform empty cylinder of radius R, length L and mass M with respect
to it's main symmetry axis.
2) The same, but for a full cylinder.
22_Rigid_body/e_22_1_038.html
Moment of Inertia
A uniform full cylinder of radius R, length L and mass M is taken, and 4 holes are drilled into it.
Each hole has a radius of a/3, and it's center is located a distance of a/2 from the main symmetry axis. The holes
are drilled symmetricaly, so as to form a cross.
Find the moment of inertia tensor of this new cylinder respect to it's main symmetry axis.
22_Rigid_body/e_22_1_039.html
Rigid body - conservation laws
A bar of length L and mass M is lying on a frictionless table. A ball with mass m and velocity v hits the bar
perpendicularly at a distance d from the bar's center. Assume the collision is fully elastic, and find m such that
after the collision only the bar moves.
22_Rigid_body/e_22_1_040.html
Physical Pendulum
Show how we can measure
timer.
using an arbitrary rigid body (for which we now the center of mass), a ruler and a
22_Rigid_body/e_22_1_041.html
פרסציה
.המערכת מסתובבת סביב ציר העובר במרכז
מערכת בנויה משתי מסות נקודתיות , ,המוחזקות על ידי מוט חסר מסה באורך
,כך שהזוית בין המוט לציר הסיבוב היא .מצאו את מומנט הכוח שיש לספק כדי לקיים את התנועה
המוט ,במהירות זוויתית קבועה
הסיבובית.
22_Rigid_body/e_22_1_042.html
גלגול ללא החלקה
)פיסיקה 1לפיסיקאים ,2/03/2006 ,מועד ב'(4 ,
על קרש אופקי מחוספס נמצא גליל אחיד במרחק מהקצה הימני .מתחילים להניע את הקרש בתאוצה
הגליל כאשר הוא מגיע לקצה .אין החלקה.
שמאלה .באיזו מהירות נע
22_Rigid_body/e_22_1_043.html
גוף קשיח
)פיסיקה 1לפיסיקאים ,25/2/2007 ,מועד ב'(5 ,
העובר במרחק מהאמצע
מערכת מורכבת ממוט אחיד בעל אורך ומסה ,אשר יכול להסתובב סביב ציר אופקי
הנגדי של המוט מחובר לקפיץ אנכי בעל קבוע קפיץ .בשיווי משקל המוט נמצא במצב אופקי .מצאו את זמן המחזור
של תנודות קטנות.
.הקצה
22_Rigid_body/e_22_2_021.html
מרכז מסה
הראה/י כי מרכז המסה של חרוט בעל גובה
וצפיפות מסה אחידה נמצא בגובה
מבסיסו.
22_Rigid_body/e_22_2_022.html
מרכז מסה
אב ובנו נמצאים בקצה השמאלי של סירה הנמצאת במנוחה .ברגע מסויים צועד הבן אל מרכז הסירה
והאב צועד אל קצה הימני של הסירה .בכמה תנוע הסירה ביחס למיקומה ההתחלתי?
נתונים:
.
מסת הסירה
מסת האב
.
מסת הבן
.
אורך הסירה
.
22_Rigid_body/e_22_2_023.html
מרכז מסה
אשר קצהו השמאלי מונח בראשית?
א .היכן מרכז המסה של מוט באורך בעל צפיפות מסה אורכית
אשר קדקודה מונח בראשית?
בעלת צפיפות מסה שטחית
ב .היכן מרכז המסה של גזרה בעלת רדיוס וזוית
מתקבלת בסעיף ב' התוצאה של סעיף א'? הסבר/י.
ג .האם בגבול
ו? -
רמז :מהם היחידות של
22_Rigid_body/e_22_2_024.html
מרכז מסה
מעל האופק .בנקודה מסויימת במסלולו מתפוצץ הפגז לשני רסיסים
פגז נורה במהירות בזוית
מנקודת הירי .באיזה מרחק מנקודת הירי
.הרסיס הראשון פוגע בקרקע במרחק
ו-
בעלי מסות
פוגע הרסיס השני ,אם נתון ששני הרסיסים פוגעים בקרקע בו זמנית?
א .פתור/י משיקולי מרכז מסה.
ב .פתור/י משיקולי תנע.
22_Rigid_body/e_22_2_041.html
חשב את מומנט ההתמד של גליל אחיד סביב ציר העובר במרכז הגליל
.חשב את מומנט ההתמד של הצורה באיור דרך ציר העובר במרכז המסה ומקביל לציר הגליל
.נתון כי הצפיפות אחידה L.אורך הגליל R/2.ורדיוס הקדח Rרדיוס הגליל הוא
22_Rigid_body/e_22_2_042.html
המבנה המתואר באיור מורכב מורכב משלושה גלגלים זהים על-גבי משטח אופקיץמהם מקדמי החיכוך המינימליים בין גליל לגליל ובין
הגליל למשטח על-מנת שהמבנה ישאר בש"מ סטטי רמז :יש לבחור בקפידה את נקודת הציר
22_Rigid_body/e_22_2_043.html
מטפס הרים השוקל 55ק" גכ נע לאורך חריץ שרוחבו 20ס"מ ע" י כך שהוא מושך עם ידיו את דופן החריץ ודוחף עם רגליו את הקיר
שמנגד .מרכז המסה של המטפס נמצא במרחק 40ס"מ מקצה החריץ .נתון כי מקדם החיכוך הסטטי בין הידיים לסלע הוא 0.4ומקדם
.החיכוך הסטטי בין הנעליים לסלע הוא 1.2
א.מהו הכוח המינימלי שעל המטפס לדחוף עם הרגליים ולמשוך עם הידיים על-מנת שיהיה יציב
ב.מה צריך להיות המרחק בין הידיים לרגליים של המטפס ,עבור הכוח המופעל בסעיף הקודם
ג .אם יורד גשם והסלע נרטב ,מקדמי החיכוך קטנים .כיצד הדבר ישפיע על תוצאות הסעיפים הקודמים
22_Rigid_body/e_22_2_044.html
מרכז מסה
חשבו את מרכז המסה של הגופים הבאים ,כולם בעלי צפיפות מסה אחידה :א .חצי קשת של מעגל .ב .חצי מעגל .ג .ספירה שהוחסרה
.ממנה ספירה בעלת חצי מהרדיוס שמיקומה נמצא במרחק חצי רדיוס ממרכז המעגל
1
22_Rigid_body/e_22_3_222.html
התנגשות
במעבדה חלקיק בעל מסה 3.16ק"ג נע במהירות של 15.6מטר לשנייה שמאלה ומתנגש חזיתית בחלקיק הנע ימינה במהירות 12.2
ומסתו 2.84ק"ג .מצא את מהירות מרכז המסה אחרי ההתנגשות.
22_Rigid_body/e_22_3_223.html
מרכז המסה של חרוט
מצא את מרכז המסה של חרוט שמסתו Mגובהו Hורדיוס בסיסו .R
22_Rigid_body/e_22_3_224.html
מצא את מרכז המסה של חרוט שמסתו Mגובהו Hורדיוס בסיסו .Rדרך משפך )קבוע במקום ( שופכים חול ,בקצב קבוע של
לשנייה על סרט נע שמסתו Mק"ג .מה גודל Fשל הכוח שיש להפעיל על הסרט על מנת להבטיח שמהירותו תישאר קבועה?
ק "ג
22_Rigid_body/e_22_3_225.html
מרכז מסה
מהו מרכז המסה של חצי מעגל?
22_Rigid_body/e_22_3_226.html
מומנט התמד
מהו מומנט ההתמד של גליל בעל מסה ,mגובה ,hרדיוס בסיס Rהמסתובב סביב ציר העובר במרחק dממרכז מסתו?
22_Rigid_body/e_22_3_227.html
מוברים ופיסיקה
כאשר מעלים ספה במעלה המדרגות ,מי מתאמץ יותר ,זה שלמטה או זה שלמעלה?
22_Rigid_body/e_22_3_228.html
גוף קשיח
נתון מוט בעל אורך dומסה m1המונח באופן אופקי ע"ג שולחן ,כאשר המוט מחובר בקצהו האחד לדופן השולחן בעזרת ציר .ברגע
מסוים פוגע בקצה המוט כדור בעל מסה m2ומהירות .V0מהי המהירות הקווית של הכדור לאחר ההתנגשות )האלסטית( ,ומהי
המהירות הזוויתית של המוט?
22_Rigid_body/e_22_3_229.html
גוף קשיח
נתון כדור בעל מסה של 3.2ק"ג ורדיוס 12ס"מ ,המסתובב סביב צירו במהירות זוויתית של 15רדיאן לשנייה נגד כיוון השעון .כדור
.לאחר כמה זמן יתחיל הכדור להתגלגל ללא החלקה? מה
זה מונח על משטח אשר בינו לבין הכדור קיים מקדם חיכוך של
תהיה מהירותו?
22_Rigid_body/e_22_4_001.html
חישוב מרכז מסה
נתונות הצורות הפשוטות הבאות:
חשב/י את מרכז המסה הגופים הנ"ל
22_Rigid_body/e_22_4_002.html
מומנט התמד 2D
מצא/י את מומנט ההתמד של טריז עבור הצירים הבאים:
א( הציר הסיבוב )ציר (zעובר דרך מרכז המסה:
)הציר ניצב למישור של הטריז(
ב( הציר עובר דרך הבסיס )מקביל לציר :(y
)הציר נמצא בתוך המישור של הטריז(
22_Rigid_body/e_22_4_004.html
גלגלת מסיבית
נתונה קליפה כדורית המסתובבת סביב ציר מרכז מסה על גבי מיסב חסר חיכוך .על הקליפה מלופף חבל קל העובר )ללא החלקה!( דרך
גלגלת
)בעלת מסה!( ומחובר לגוף m2כמתואר באיור.
א( מה מהירותו של גוף m2לאחר שעבר גובה ?h
ב( מה היא תאוצתו?
ג( מה המתיחות בחבל )בחלקיו השונים(?
נתונים נוספים:
מסת הקליפה – , m1רדיוס הקליפה –.Rניתן לתאר את הגלגלת כ 3-גלילים הזהים במסתם ,m3כאשר המבנה הוא ששני הגלילים
החיצוניים הם בעלי רדיוס גדול r3והגליל
שבניהם הוא בעל רדיוס .r2
22_Rigid_body/e_22_4_005.html
מומנטים וקטילת דרקונים
דרייק קוטל הדרקונים מטייל בטירה .לפתע ,בקצה המסדרון )במרחק 30מטרים( רואה דרייק דרקון .מייד פונה דרייק ונמלט לחדר
הקרוב ביותר )הוא לא היה קוטל כ"כ מוצלח( ,שדלתה פתוחה ב .90º-דרייק מתאמץ לסגור את הדלת במהירות ,לכן הוא מפעיל את כל
כוחו ) (F=650Nבקצה הדלת )רוחב הדלת מטר וחצי( .בנוסף ידוע כי גובה הדלת 3מטרים ,מסתה kg 850ומהירות הדרקון 45
קמ"ש.
האם דרייק יהפוך לארוחת צהריים )האם הוא יספיק לסגור את הדלת לפני שהדרקון יגיע(? )הנחייה :יש לחשב את מומנט ההתמד של
הדלת(
22_Rigid_body/e_22_4_006.html
טריבושה
הטריבושה ) (Trebuchetהיא מכונת מצור מימי הביניים .ביכולתה היה להעיף סלעים במשקל עשרות ק"ג למרחק כמה מאות מטרים
בדיוק רב.
א( תאר/י את אופן פעולתה של הטריבושה.
ב( למה הקליע מחובר בחבל למוט התנופה ולא נמצא ישירות עליו?
ג( עליך לתכנן טריבושה ) למצוא את המסת התנופה (Mהמסוגלת להעיף סלע במשקל 40ק"ג למרחק 300מטרים .בידך מוט תנופה
באורך 28מטרים )היחס הרצוי בין החלק הקצר לארוך הוא (6:1במשקל 100ק"ג .בנוסף ,ידוע שהגובה התחלתי של הקלע גדול פי 4
מהגובה הסופי מסת התנופה.
22_Rigid_body/e_22_4_007.html
גלגול כדורים
נתונים שני כדורים בעלי מסה זהה ,mהמתגלגלים ללא החלקה במהירות .vבנקודה מסוימת כל אחד מהכדורים נתקל במדרון .האחד
חלק לגמרי והשני לא .מי מבין הכדורים יעלה גבוה יותר?
22_Rigid_body/e_22_4_008.html
התנגשויות בגוף קשיח
נתון מוט אופקי המונח m1על שולחן חסר חיכוך .גוף נקודתי בעל מסה m2פוגע בו במרחק dממרכזו בהתנגשות אלסטית לחלוטין.
א( מה תהיה מהירותו הקווית והזוויתית של המוט? )המהירות הסופית של m2היא לא (!0
ב( הנח/י כי ההתנגשות היא פלסטית לחלוטין .מה תהיה מהירותו הקווית והזוויתית של המוט?
22_Rigid_body/e_22_4_009.html
ביליארד
נתון כדור ביליארד הנמצא במנוחה .הכדור מקבל מכה חדה מסטקה הנמצאת במצב אופקי ,בגובה hממרכז הכדור .צורת מכה ספציפית
זו יוצרת אפקט הנקרא “ :”Forward Englishהכדור מתחיל לנוע במהירות ,V0ובגלל האפקט הוא מגיע בסופו של תהליך למהירות
.
סופית
הוכח/י כי
,כאשר Rהוא רדיוס הכדור.
22_Rigid_body/e_22_4_010.html
גלגול במדרון
נתון גליל חלול המתגלגל ללא החלקה מראש מישור משופע בגובה .Hלאחר שהגליל מגיע לקצה המישור המשופע הוא נופל בנפילה
חופשית לאורך גובה .hבשלב זה הגליל מגיע למישור משופע בזווית θהשווה לזווית הרגעית בה הוא נמצא ברגע הגעתו למישור.
א( איך תיראה תנועת הגליל על המישור המשופע השני – האם הוא יחליק או יתגלגל?
ב( האם תנועה זו תישאר יציבה? אם לא ,לכמה זמן?
22_Rigid_body/e_22_4_011.html
גלגול פחית
פחית ריקה שמסתה m1מתגלגלת ללא החלקה על מישור אופקי במהירות .vהפחית מלאה בקרח יבש )מוצק( שמסתו .m2במרכזי
הבסיסים של הפחית יש חורים קטנים שדרכם מתאדה הקרח היבש .הנח/י שהקרח מתאדה מהר מאוד.
א( אילו חוקי שימור מתקיימים במשך התנועה? נמק/י
ב( מה היא מהירות מרכז המסה של הפחית מיד לאחר שכל הקרח היבש התאדה?
ג( מה היא המהירות הסיבובית של הפחית באותו זמן?
ד( האם באותו זמן תנועתה נשארת כגלגול ללא החלקה?
22_Rigid_body/e_22_4_012.html
חרוט מתגלגל
נתון חרוט בעל רדיוס ,Rמסה ,Mזווית פתיחה 2θוגובה .hהחרוט מתגלגל על גבי שולחן ,כאשר בסיסו מאונך לשולחן כמתואר באיור.
המהירות הזוויתית של החרוט היא .Ωבטא/י את האנרגיה הקינטית הכללית של הקונוס כפונקציה של הפרמטרים הנ"ל.
רמז :צריך להשתמש בעובדה שהחרוט מתגלגל ללא החלקה ,כלומר שיש התאמה בין המהירות הזוויתית של החרוט למהירות הזוויתית
של הבסיס ):(ω
22_Rigid_body/e_22_4_017.html
גשר עם משאית
גשר שאורכו
משאית שמסתה
נתמך בכל קצה כמתואר בציור.
ומסתו
נמצאת
מקצה הגשר.
מהם הכוחות הפועלים בכל אחת מנקודות התמיכה שבקצוות הגשר?
22_Rigid_body/e_22_4_018.html
מוט ועליו מסות
במיקומים שמתוארים בציור .המוט נשען במנוחה בשתי נקודות.
ואורך תומך שני מסות
מוט אחיד עם מסה
עבור איזה ערך של xהמוט יהיה מאוזן כולו על נקודת משען ) Pכח הנורמל בנק' Oיהיה שווה לאפס(?
22_Rigid_body/e_22_4_019.html
הבוטיק של לולו
שלט בצורת חצי ספירה בעלת קוטר
וצפיפות מסה אחידה נתלה משני חוטים כמתואר בציור .מהן המתיחויות בחוטים?
22_Rigid_body/e_22_4_020.html
מומנט
חבל חסר מסה אינסופי מלופף סביב שני גלילים בעלי
בהתאמה.
ו
ורדיוסים
ו
מסות
א .מהם תאוצות מרכז המסה של המסות?
ב .מה התאוצות הרדיאליות של המסות?
22_Rigid_body/e_22_4_021.html
גלגול
דיסקה מלאה בעלת רדיוס
במורד שיפוע בזווית .
מצא את תאוצת מרכז המסה.
ומסה
מתגלגלת ללא החלקה
22_Rigid_body/e_22_4_022.html
כדור גלגלת ומסה
יכול להסתובב סביב ציר אנכי לרצפה העובר במרכזו ,בהשפעת חבל הכרוך
ורדיוסו
כדור שמסתו
ורדיוסה
עליו .החבל קשור דרך גלגלת )גליל מלא( שמסתה
היכולה להסתובב סביב ציר סיבוב העובר במרכזה לתיבה שמסתה
.
.כמו כן נתון שהחבל אינו מחליק על הכדור ועל הגלגלת
נתון כי מומנט ההתמד של של כדור ביחס לציר הסיבוב העובר במרכזו
ומומנט ההתמד של גליל מלא ביחס לציר הסיבוב העובר במרכזו הוא
הוא
.
.א .מהי תאוצתו הזויתית של הכדור
.ב .מהי תאוצתה הזויתית של הגלגלת
.ג .מהי תאוצת המסה
.ד .מהי המתיחות בכל אחד מהחבלים
22_Rigid_body/e_22_4_023.html
מסה גלגלת וקפיץ
מסה קשורה בחוט חסר מסה לקפיץ עם קבוע קפיץ
וצורה דיסקה ברדיוס
החבל נמצא במגע עם גלגלת שמסתה
.היכולה להסתובב סביב ציר סיבוב העובר במרכזה
.במהלך התנועה לא מחליק החבל על גבי הגלגלת
.משחררים את המסה ממנוחה כאשר הקפיץ רפוי
.מצא מהירות המסה לאחר שירדה מרחק
מומנט ההתמד של דיסקה מלאה ביחס לציר סיבוב במרכזה הוא
.
22_Rigid_body/e_22_4_024.html
איזון סרגל
תולים בצד אחד משקולת שמסתה
על סרגל חסר מסה שאורכו
ובצד השני משקולת שמסתה
.
.א .באיזה מרחק מהמשקולת הראשונה יש למקם את נקודת המשען על מנת שהסרגל ישאר מאוזן
.ב .נחליף את הסרגל חסר המסה בסרגל אחיד שמסתו
.מצא את נקודת המשען כעת
,שבצדו האחד המסה
ובצדו השני אין מסה
22_Rigid_body/e_22_4_025.html
סולם מחליק
ואורכו ,נשען על קיר אנכי
סולם שמסתו
.חסר חיכוך .מקדם החיכוך בין הסולם לרצפה הוא
בה ניתן להעמיד הסולם בשיווי משקל
מהי הזוית המינימלית
22_Rigid_body/e_22_4_026.html
ביליארד
במהירות
מקל ביליארד חובט בכדור ביליארד שמסתו
מעל מרכז הכדור בו עליו לחבוט על מנת שהכדור יתגלגל ללא החלקה
מהו הגובה המינימלי
22_Rigid_body/e_22_4_027.html
תאוצת המסות
.נתונה המערכת בציור ,מצא את תאוצת כל המסות
.נתונה תאוצת הכובד וכן נתון שהחבל הוא חסר מסה והוא נע על גבי הגליל ללא החלקה
22_Rigid_body/e_22_4_028.html
צעידה על סחרחרה
משטח סבוב עגול מסתובב על ציר אנכי קבוע ומשלים
.סיבוב אחד ב שניות .מומנט ההתמד של המשטח סביב צירו הוא
העומד בתחילה במרכז המשטח צועד לאורך הרדיוס
.אדם שמסתו
כמה שניות יארך סיבוב של המשטח כאשר האדם נמצא במרחק ממרכזו
מה העבודה שהאדם השקיע בהליכתו
22_Rigid_body/e_22_4_029.html
מחליקי קרח מסתובבים
שני מחליקים על הקרח בעל אותה מסה נעים אחד לקראת השני
בקווים מקבילים שהמרחק בינם הוא .אחד מהם נע במהירות
והוא מחזיק בידו בקצהו של מוט אופקי חסר מסה באורך
ותופס במוט כאשר הוא נפגש איתו
.והמחליק השני נע במהירות
.א .מה המהירות הזויתית לאחר תפיסת המוט
אחד מהשני
.כעת המחליקים מושכים במוט עד אשר הם במרחק
.ב .מהי המהירות הזויתית החדשה
.ג .מה העבודה שנדרשה בשביל לעבור למצב זה
22_Rigid_body/e_22_4_030.html
תנע זוויתי
מחוברים על ידי מוט קשיח וחסר מסה באורך
,הגופים
מתקרב
ומסתובבים סביב מרכז המסה במהירות זוויתית .הגוף
.אל המערכת במהירות בזוית ,ביחס לכיוון החיובי של ציר ה
ונדבק אליו ברגע שהמוט מקביל לציר
מתקרב לגוף
.הגוף
?א .מה מהירות מרכז המסה של המערכת כולה
?ב .מהי המהירות הזוויתית לאחר ההתנגשות
ג .מהו השינוי הכללי באנרגיה של המערכת
22_Rigid_body/e_22_4_031.html
קוף מטפס על סולם
הסולם באיור ,במסה של 2ק"ג ,נשען על הקיר בזווית של 30מעלות .מקדם החיכוך בין הסולם לקיר הוא 0.5ובין הסולם לרצפה .0.34
קוף במסה 10ק"ג מתחיל לטפס על הסולם במהירות קבועה .כאשר הקוף מגיע למרחק מסויים מבסיס הסולם ,הסולם מחליק .מצאו את
.היחס בין מרחק זה ובין אורך הסולם
22_Rigid_body/e_22_4_130.html
מומנט התמד של ספירה
א .חשב מומנט התמד של ספירה )כדור חלול( בעלת צפיפות מסה אחידה ,רדיוס Rומסה Mסביב ציר העובר דרך מרכז המסה.
ב .חשב מומנט התמד של אותה ספירה סביב ציר המשיק לספירה.
22_Rigid_body/e_22_4_140.html
מולקולת חמצן
מולקולת חמצן
מסת כל אטום היא
מסתובבת במישור
סביב ציר העובר במרכז בין המולקלות.
ובטמפרטורת החדר המרחק בין האטומים הוא
להתייחס כאל מסה נקודתית(.
א .חשב את מומנט ההתמד של המולקולה סביב ציר
ב .נתון שהמהירות הזויתית סביב ציר היא
)לאטום ניתן
)שים לב שהבעיה היא בדידה(
,מהי האנרגיה הקינטית כתוצאה מהסיבוב?
22_Rigid_body/e_22_4_150.html
כדור בייסבול
נע במהירות
מרכז המסה של כדור בייסבול בעל רדיוס
הכדור מסתובב סביב ציר העובר דרך מרכז המסה שלו במהירות זויתית
,
א .חשב את היחס בין האנרגיה הקינטית כתוצאה ממהירות מרכז המסה לבין האנרגיה הקינטית כתוצאה מהסיבוב.
התייחס לכדור כאל כדור מלא.
22_Rigid_body/e_22_4_160.html
מחוגי השעון של הביג בן
הגדלים של מחוגי השעון של השעון המפורסם "ביג בן" הם
ו-
והמסות שלהם הן
ו-
.חשב את סך האנרגיה הקינטית כתוצאה מהסיבוב של המחוגים.
המחוג הקצר מייצג את השעה והארוך מייצג דקה.
ניתן להתייחס למחוגים כאל מוטות עם מומנט התמד
ניתן להניח שציר הסיבוב הוא בקצה של המחוג
22_Rigid_body/e_22_5_002.html
פיצוח אגוזים
אגוז מלך נשבר כאשר משני צידיו פועל עליו כוח של 46ניוטון .מהו הכוח שיש להפעיל על קצות הידיות של המפצח על מנת לפצחו?
האם השימוש במפצח עדיף באופן משמעותי ביחס לשיטה המסורתית של להכות באגוז באבן או באגרוף? ...מימדי המפצח נתונים בציור
46-9
22_Rigid_body/e_22_5_081.html
גוף קשיח
מגדל פיזה הוא בגובה של 55מטר וקוטרו 7מטר .ראש המגדל נמצא במרחק של 4.5מטר מהאנך לקרקע) .נניח כי( המגדל לא נופל
מכיוון שמרכז המסה שלו הוא מעל בסיס המגדל )לצורך התרגיל נתייחס למגדל כגליל(.
א.מהו המרחק הנוסף שיש להזיז את ראש המגדל מהאנך בכדי שייפול?
ב.מה תהיה זווית הנטייה של המגדל במקרה זה?
22_Rigid_body/e_22_5_082.html
גוף קשיח
מטפס הרים השוקל 55ק" גכ נע לאורך חריץ שרוחבו w=0.2mע" י כך שהוא מושך עם ידיו את דופן החריץ ודוחף עם רגליו את
הקיר שמנגד .מרכז המסה של המטפס נמצא במרחק של d=0.4mמקצה החריץ .נתון כי מקדם החיכוך הסטטי בין הידיים לסלע הוא
m1=0.4ומקדם החיכוך הסטטי בין הנעליים לסלע הוא ) .m2=1.2שיטת טיפוס זו נקראת .(layback
א.מהו הכוח המינימלי שעל המטפס לדחוף עם הרגליים ולמשוך עם הידיים על-מנת שיהיה יציב?
ב.מה צריך להיות המרחק בין הידיים לרגליים של המטפס ) ,(hעבור הכוח המופעל בסעיף הקודם?
ג .אם יורד גשם והסלע נרטב ,מקדמי החיכוך קטנים .כיצד הדבר ישפיע על תוצאות הסעיפים הקודמים?
22_Rigid_body/e_22_5_083.html
גוף קשיח
ילד שמסתו 30ק"ג עומד בקצה קרוסלה נייחת שמסתה 100ק"ג ורדיוסה 2מטר .מומנט ההתמד של הקרוסלה סביב ציר העובר
במרכזה הוא .kg*m2 150הילד תופס כדור במסה של 1ק"ג הנזרק אליו מחברו .רגע לפני שהכדור נתפס מהירותו היא 12מטר
לשניה וכיוונה נוטה בזווית של 37מעלות למשיק לקרוסלה.
א.מה המהירות הזוויתית של הקרוסלה לאחר תפיסת הכדור?
ב.מה המהירות המשיקית של הילד לאחר תפיסת הכדור?
22_Rigid_body/e_22_5_084.html
גוף קשיח
שתי נשים מחליקות על הקרח .לכל אחת מסה של 50ק"ג .הן מתקרבות אחת כלפי השניה במהירות של 1.4מטר לשניה )כל אחת(
במסלולים מקבילים שהמרחק ביניהם הוא 3מטר .מחליקה אחת נושאת מוט בעל מסה זניחה .המחליקה השניה אוחזת בקצה המוט כאשר
הן חולפות זו ליד זו.
א.תאר/י בצורה כמותית את תנועת המחליקות לאחר ששתיהן אוחזות במוט.
ב.מהי האנרגיה הקינטית של המחליקות ?
ג.בשלב הבא המחליקות מתקרבות לאורך המוט עד שהמרחק ביניהן הוא מטר .מהי המהירות הזוויתית שלהן כעת?
ד.מהי האנרגיה שלהן?
ה.הסבר/הסבירי משיקולי אנרגיה כיצד האנרגיה הקינטית עלתה?
22_Rigid_body/e_22_5_090.html
גוף צפיד -סטטיקה
מוט שמסתו mואורכו Lמחובר בעזרת חוט לקיר לא חלק כמוראה .נתון . 700=bמה צריך להיות מקדם החיכוך כדי שהמקל לא יחליק
)תשובה מספרית!( ?
22_Rigid_body/e_22_5_091.html
גוף צפיד -סטטיקה
גוף שמסתו 5ק"ג תלוי על מוט אחיד הנטוי בזווית 600מהקיר .המוט ,שמסתו ,mמוחזק ע"י חבל היוצר עם הקיר זווית בת .450
א .מהי המתיחות Tבחבל זה ,אם ידוע ש? m=2kg -
ב .הראו שכאשר mשואף לאפס ,הכוח שמפעיל המוט על נקודת חיבור החוטים מכוון לאורך המוט.
)הערה :כוח זה מאפס את השקול של Tו.('T -
22_Rigid_body/e_22_5_092.html
גוף צפיד -דימניקה
כורכים חוט פעמים אחדות סביב גליל שמסתו mורדיוסו . rאת קצה החוט מחזיקים קבוע ומשחררים את הגליל ללא מהירות
התחלתית .החוט נשלף אך אינו מחליק כאשר הגליל נופל כצעצוע יו-יו .חשב את תאוצת הגליל והמתיחות בחוט אם:
א .הגליל הינו מקשי
ב .הגליל הנו חלול דק דפנות
22_Rigid_body/e_22_5_093.html
גוף צפיד -דינמיקה
מוט עץ שאורכו 2מטר ומסתו 5ק"ג ניצב אנכית כשהוא מחובר לציר הסיבוב בקצהו .יורים לתוך המוט קליע שמסתו 10גרם במהירות
400מטר לשניה הנח כי הקליע מתנהג כמו מסה נקודתית .בקליע נתקע במוט 10סנטימטר מעל קצהו.
א .מהיא מהירות הזויתית של המוט לאחר שנתקע בו הכדור?
ב .מהיא הזוית המקמימאלית אליה יגיע המוט?
22_Rigid_body/e_22_5_094.html
גוף צפיד -סטטיקה
גוף שמסתו 5ק"ג תלוי על מוט אחיד הנטוי בזווית 600מהקיר .המוט ,שמסתו ,mמוחזק ע"י חבל היוצר עם הקיר זווית בת .450
א .מהי המתיחות Tבחבל זה ,אם ידוע ש? m=2kg -
ב .מהו הכח שמפעיל הקיר על המוט?
22_Rigid_body/e_22_8_012.html
גוף קשיח
מנוע מחובר לגלגלת מרכזית הבנויה מגלילי ברדיוס R/2ומסה ,mאליו מוצמדים משני צידיו שתי דסקיות אחידות בעלות מסה m
ורדיוס .Rכאשר המנוע מסתובב ומסובב את הגלגלת ,מתלפף כבל חסר מסה על הגליל )ללא החלקה( .על הכבל תלויה מסה של .3.5m
מהו מומנט הכוח של המנוע הדרוש כדי להעלות את המסה בתנאים הבאים:
א .בתאוצה קבועה.
ב .במהירות קבועה.
ג .פתרו את סעיף ב' בעזרת אנרגיה.
22_Rigid_body/e_22_8_092.html
גוף קשיח
מצא/י את מרכז המסה של מערכת המוטות הבאה:
]L1 = 1.2 [m] m1 = 12 [kg
]L2 = 1.5 [m] m2 = 15 [kg
]L3 = 1.8 [m] m3 = 18 [kg
22_Rigid_body/e_22_8_093.html
גוף קשיח
נתונה דיסקה שקוטרה 2R = 1 mובה חור מעגלי שקוטרו .2r = 0.5 mהתפלגות המסה בדיסקה היא אחידה .מצא/י את נקודת מרכז
המסה של הדיסקה) .רמז :התייחסו לחור כאל דיסקה עם מסה שלילית(.
22_Rigid_body/e_22_8_094.html
גוף קשיח
ילד שמסתו [kg] 40הולך על קורה שאורכה 2מטרים .ומסתה .[kg] 20הקורה תלויה באוויר על ידי שני חוטים ,המתיחות המקסימלית
של החוט הימני היא [N] 350ושל החוט השמאלי .[N] 400מהו התחום בו יכול לצעוד הילד בביטחה על הקורה ?
22_Rigid_body/e_22_8_095.html
גוף קשיח
בתחרות ריצה במסלול מעגלי ,שנערכה לקראת האולימפיאדה )בייג'ין (2008בשכונה ד' ,לפני ההקפה האחרונה מוביל האצן הנודע רב
שודד על פני האצן המפורסם רב שוטר בזווית של ) π /8כלומר לרב שוטר נותרה הקפה שלימה ורב שודד הקפה פחות .(π /8ידוע כי
רדיוסו של המסלול המעגלי בשכונה הוא [m] 100וכן שמהירותם של רב שודד ורב שוטר היא .[km/h] 54
א.כעבור כמה זמן יגיעו רב שודד ורב שוטר לקו הסיום בתנאים אלו ?
ב .בהתחשב בעובדה כי רב שודד הוא מעשן כבד ,ומתחיל להאט לקראת הסיום ,מה תהיה התאוטה )תאוצה שלילית( הזוויתית הקבועה
המינימלית שתגרום למהפך במירוץ ?
ג .אם יפתיע רב שודד וימשיך באותו קצב עד הסיום מה תהיה התאוצה הזוויתית המינימלית של רב שוטר כך שיעקוף את יריבו המר
בזווית של π /10מקו הסיום?
22_Rigid_body/e_22_8_096.html
גוף קשיח
אם מקיפים את כדור הארץ בחבל לאורך קו המשווה )ומהדקים היטב( ואח" כ מוסיפים לאורכו של החבל 1מטר ושוב מסדרים אותו
בצורה מעגלית לאורך קו המשווה ,האם ברווח שנוצר יוכלו לעבור שפן ? חתול?
22_Rigid_body/e_22_8_113.html
גוף קשיח
מוט צר ואחיד שאורכו Lומסתו Mעומד על שולחן אופקי חלק .מטבע קטן שמסתו mמחליק על השולחן ומתנגש בתחתית המוט
התנגשות אלסטית לחלוטין.
א.אילו גדלים פיסיקליים נשמרים בתהליך.
ב.אם המטבע נשאר במנוחה לאחר ההתנגשות ,מהו יחס המסות בין המטבע למוט.
22_Rigid_body/e_22_8_114.html
גוף קשיח
ר' ידידנו הוותיק ,נוהג לשחק ביליארד מדי יום חמישי .כאשר הגיע תורו להכות ,ניסה ר' לחשב היכן ניתן להכות בכדור מכה אופקית כך
שהכדור יתגלגל ללא החלקה מיד לאחר המכה .עזרו סטודנטים יקרים לר' למצוא את הנקודה הנכונה.
תשובה סופית 2/5R :מעל הציר העובר במרכז הכדור.
22_Rigid_body/e_22_8_115.html
גוף קשיח
לאחר שניסה ולא הצליח להכות בדיוק בנקודה המבוקשת ,אלא דווקא בגובה Rמהשולחן ,ראה ר' כיצד הכדור מתגלגל ומחליק אך
לאחר מרחק מסוים התגלגל הכדור ללא החלקה .מהו המרחק האופקי אשר עבר הכדור עד שהתגלגל ללא החלקה ?
הנח/י כי מקמי החיכוך שווים µ s = µ k = µ :והמהירות ההתחלתית של הכדור היא .v0
22_Rigid_body/e_22_8_314.html
גוף קשיח
קורה שמסתה m=10kgואורכה L=0.5 mמוחזקת לקיר ע"י ציר .משחררים את הקורה ממנוחה.
א.מהו מומנט ההתמד של הקורה יחסית לציר ?
ב.מצאו ביטוי לתאוצה הזוויתית כפונקציה של הזווית .b
ג.מהן התאוצות המשיקיות aA ,ו aB -בנקודות Aו B-כאשר ? b=500נתון ? OA=0.15m, OB=0.4m :
22_Rigid_body/e_22_8_315.html
גוף קשיח
מטקה עשויה מקרש בעל צפיפות מסה שטחית של
בצורת דיסקה ברדיוס ,[cm] 15ומוט חד ממדי באורך [cm] 20
ומסה של 50גרם ,על פי הציור.
א.מהו מומנט ההתמד של המטקה כאשר ציר הסיבוב הוא נקודת החיבור של המוט לדיסקה?
ב.מהי התאוצה הזוויתית של המטקה כאשר מופעל בקצה המוט כוח של
התעלמו מכוח הכובד בסעיף זה.
אנכית למישור המוט והדיסקה )ע" פ הציור(.
22_Rigid_body/e_22_8_316.html
גוף קשיח
מטקה עשויה מקרש בעל צפיפות מסה שטחית של
בצורת דיסקה ברדיוס ,[cm] 15ומוט חד ממדי באורך [cm] 20
ומסה של 50גרם ,על פי הציור.
א.מהו מומנט ההתמד של המטקה כאשר ציר הסיבוב הוא נקודת החיבור של המוט לדיסקה?
אנכית למישור המוט והדיסקה )ע" פ הציור(.
ב.מהי התאוצה הזוויתית של המטקה כאשר מופעל בקצה המוט כוח של
התעלמו מכוח הכובד בסעיף זה.
22_Rigid_body/e_22_8_394.html
גוף קשיח
בתחרות ריצה במסלול מעגלי ,שנערכה לקראת האולימפיאדה )בייג'ין (2008בשכונה ד' ,לפני ההקפה האחרונה מוביל האצן הנודע רב
שודד על פני האצן המפורסם רב שוטר בזווית של ) π /8כלומר לרב שוטר נותרה הקפה שלימה ורב שודד הקפה פחות .(π /8ידוע כי
רדיוסו של המסלול המעגלי בשכונה הוא [m] 100וכן שמהירותם של רב שודד ורב שוטר היא .[km/h] 54
א.כעבור כמה זמן יגיעו רב שודד ורב שוטר לקו הסיום בתנאים אלו ?
ב .בהתחשב בעובדה כי רב שודד הוא מעשן כבד ,ומתחיל להאט לקראת הסיום ,מה תהיה התאוטה )תאוצה שלילית( הזוויתית הקבועה
המינימלית שתגרום למהפך במירוץ ?
ג .אם יפתיע רב שודד וימשיך באותו קצב עד הסיום מה תהיה התאוצה הזוויתית המינימלית של רב שוטר כך שיעקוף את יריבו המר
בזווית של π /10מקו הסיום?
22_Rigid_body/e_22_8_395.html
2. Figure 9-40 shows the lines of action and the points of application of two forces about the origin 0, all
vectors being in the plane of the figure.
Imagine these forces to be acting on a rigid body pivoted about an axis through 0 and perpendicular to the plane
of the figure.
(a) Find an expression for the magnitude of the resultant torque on the body.
(b) If r1 = 1.30 m, r2 = 2.15 m, F1 = 4.20 N, F2= 4.90 N, 1 = 75.0 , and 2 = 58.0 ,
?what are the magnitude and direction of the resultant torque
22_Rigid_body/e_22_8_396.html
3. Redraw Fig. 9-40 under the following transformations:
(a) F -F,
(b) r -r, and
(c) F -F and r -r, in each case showing the new direction of the torque. Check for consistency with the
right-hand rule.
22_Rigid_body/e_22_8_397.html
9. What is the torque about the origin on a particle located at x = 1.5 m, y = -2.0 m, Z = 1.6 m due to a force
F = (3.5 N)i - (2.4 N)j + (4.3 N)k?
Express your result in unit vector notation.
22_Rigid_body/e_22_8_398.html
10. A particle is located at r = (0.54 m)i + (-0.36 m)j + (0.85 m)k. A constant force of magnitude 2.6 N acts on
the particle.
Find the components of the torque about the origin when the force acts in
(a) the positive x direction and
(b) the negative z direction.
22_Rigid_body/e_22_8_399.html
12. Three particles are attached to a thin rod of length 1.00 m and negligible mass that pivots about the origin in
the xy plane.
Particle 1 (mass 52 g) is attached a distance of 27 cm from the origin, particle 2 (35 g) is at 45 cm, and particle
3 (24 g) at 65 cm.
(a) What is the rotational inertia of the assembly?
(b) If the rod were instead pivoted about the center of mass of the assembly, what would be the rotational
inertia?
22_Rigid_body/e_22_8_400.html
13. Two thin rods of negligible mass are rigidly attached at their ends to form a 90° angle. The rods rotate in the
xy plane with the joined ends forming the pivot at the origin.
A particle of mass 75 g is attached to one rod a distance of 42 cm from the origin, and a particle of mass 30 g is
attached to the other rod a distance of 65 cm from the origin.
(a) What is the rotational inertia of the assembly?
(b) How would the rotational inertia change if the particles were both attached to one rod at the given distances
from the origin?
22_Rigid_body/e_22_8_401.html
15. A helicopter rotor blade is 7.80 m long and has a mass of 110 kg.
(a) What force is exerted on the bolt attaching the blade to the rotor axle when the rotor is turning at 320
rev/min?
(Hint: For this calculation the blade can be considered to be a point mass at the center of mass. Why?)
(b) Calculate the torque that must be applied to the rotor to bring it to full speed from rest in 6.70 s. Ignore air
resistance.
(The blade cannot be considered to be a point mass for this calculation. Why not? Assume the distribution of a
uniform rod.)
22_Rigid_body/e_22_8_402.html
22. A certain nut is known to require forces of 46 N exerted on it from both sides to crack it.
What forces F will be required when it is placed in the nutcracker shown in Fig. 9-46?
22_Rigid_body/e_22_8_403.html
23. The leaning Tower of Pisa (see Fig. 9-47) is 55 m high and 7.0 m in diameter.
The top of the tower is displaced 4.5 m from the vertical. Treating the tower as a uniform, circular cylinder,
(a) What additional displacement, measured at the top, will bring the tower to the verge of toppling?
(b) What angle with the vertical will the tower make at that moment? (The current rate of movement of the top
is 1 mmlyear.)
22_Rigid_body/e_22_8_404.html
24. A cube stays at rest on a horizontal table when a small horizontal force is applied perpendicular to and at
the center of an upper edge.
The force is now steadily increased. Does the cube slide or topple first?
The coefficient of static friction between the surfaces is equal to 0.46.
22_Rigid_body/e_22_8_405.html
28. A diver of weight 582 N stands at the end of a uniform 4.48-m diving board of weight 142 N.
The board is attached by two pedestals 1.55 m apart, as shown in Fig. 9-48.
Find the tension (or compression) in each of the two pedestals.
22_Rigid_body/e_22_8_406.html
29. What minimum force F applied horizontally at the axle of the wheel in Fig. 9-49 is necessary to raise the
wheel over an obstac1e of height h?
Take r as the radius of the wheel and W as its weight.
22_Rigid_body/e_22_8_407.html
31. One end of a uniform beam weighing 52.7 1b and 3.12 ft long is attached to a wall with a hinge.
The other end is supported by a wire making equal angles of 27.0° with the beam and wall (see Fig. 9-51).
(a) Find the tension in the wire.
(b) Compute the horizontal and vertical components of the force on the hinge.
22_Rigid_body/e_22_8_408.html
19. A uniform disk of radius R and mass M is spinning with angular speed
surface;
the coefficient of kinetic friction between disk and surface is k.
(a) Find the frictional torque on the disk.
(b) How long will it take for the disk to come to rest?
o. It is placed on a flat horizontal
22_Rigid_body/e_22_8_409.html
20. A hoop rolling down an inclined plane of inclination angle keeps pace with a block sliding down the
same plane.
Show that the coefficient of kinetic friction between the block and the plane is given by k =1/2 tan .
22_Rigid_body/e_22_8_410.html
21. A uniform sphere rolls down an incline.
(a) What must be the incline angle if the linear acceleration of the center of the sphere is to be O.133g?
(b) For this angle, what would be the acceleration of a frictionless block sliding down the incline?
22_Rigid_body/e_22_8_411.html
22. A solid cylinder of length L and radius R has a weight W. Two cords are wrapped around the cylinder, one
near each end, and the cord ends are attached to hooks on the ceiling.
The cylinder is held horizontally with the two cords exactly vertical and is then released (Fig. 9-66). Find
(a) the tension in each cord as they unwind and
(b) the linear acceleration of the cylinder as it falls.
22_Rigid_body/e_22_8_412.html
23. Show that a cylinder will slip on an inclined plane of inclination angle
if the coefficient of static friction
between plane and cylinder is less than 1/3 tan .
22_Rigid_body/e_22_8_413.html
24. A uniform disk, of mass M and radius R, lies on one side initially at rest on a frictionless horizontal surface.
A constant force F is than applied tangentially at its perimeter by means of a string wrapped around its edge.
Describe the subsequent (rotational and translational) motion of the disk.
22_Rigid_body/e_22_8_414.html
25. A sphere, a cylinder, and a hoop (each of radius R and mass M) start from rest and roll down the same
incline.
(a) Which object gets to the bottom first?
(b) Does your answer depend on the mass or radius of the objects? Explain.
22_Rigid_body/e_22_8_415.html
9. A sanding disk with rotational inertia 1.22 X 10-3 kg m2 is attached to an electric drill whose motor
delivers a torque of 15.8 N m. Find
(a) the angular momentum and
(b) the angular speed of the disk 33.0 ms after the motor is turned on. (1 ms = 10-3 s)
22_Rigid_body/e_22_8_416.html
10. A wheel of radius 24.7 cm, moving initially at 43.3 m/s, rolls to a stop in 225 m. Calculate
(a) its linear acceleration and
(b) its angular acceleration.
(c) The wheel's rotational inertia is 0.155 kg m2. Calculate the torque exerted by rolling friction on the wheel.
22_Rigid_body/e_22_8_417.html
13. A uniform stick has a mass of 4.42 kg and a length of 1.23 m. It is initially lying flat at rest on a frictionless
horizontal surface
and is struck perpendicularly by a puck (rubber disk) imparting a horizontal impulsive force of impulse 12.8 N
s at a distance of 46.4 cm from the center.
Determine the subsequent motion of the stick.
22_Rigid_body/e_22_8_418.html
18. In a lecture demonstration, a toy train track is mounted on a large wheel that is free to turn with negligible
friction about a vertical axis; see Fig. 10-25.
A toy train of mass m is placed on the track and, with the system initially at rest, the electrical power is turned
on.
The train reaches a steady speed v with respect to the track. What is the angular velocity of the wheel, if its
mass is M and its radius R?
(Neglect the mass of the spokes (wires) of the wheel.)
22_Rigid_body/e_22_8_419.html
24. A girl of mass 50.6. kg stands on the edge of a frictionless merry-go-round of mass 827 kg and radius 3.72
m that is not moving.
She throws a l.13-kg rock in a horizontal direction that is tangent to the outer edge of the merry-go-round.
The speed of the rock, relative to the ground, is 7.82 m/s. Calculate
(a) the angular speed of the merry-go-round and
(b) the linear speed of the girl after the rock is thrown. Assume that the merry-go-round is a uniform disk.
22_Rigid_body/e_22_8_420.html
26. A top is spinning at 28.6 rev/s about an axis making an angle of 34.0° with the vertical.
Its mass is 492 g and its rotational inertia is 5.12 x 10-4 kg m2. The center of mass is 3.88 cm from the pivot
point.
The spin is clockwise as seen from above.
Find the magnitude (in rev/s) and direction of the angular velocity of precession.
22_Rigid_body/e_22_8_421.html
3. To get a billiard ball to roll without sliding from the start, the cue must hit the ball not at the center
(that is, a height above the table equal to the ball's radius R) but exactly at a height 2R/5 above the center.
Prove this result.
22_Rigid_body/e_22_8_422.html
5. A billiard ball, initially at rest, is given a sharp impulse by a cue. The cue is held horizontally a distance h
above the centerline as in Fig. 10-28.
The ball leaves the cue with a speed vo and, because of its "forward English" (spin), eventually acquires a final
speed of 9vo/7.
Show that h = 4R/5, where R is the radius of the ball.
22_Rigid_body/e_22_8_423.html
8. A uniform fiat disk of mass M and radius R rotates about a horizontal axis through its center with angular
speed o.
(a) What is its angular momentum?
(b) A chip of mass m breaks off the edge of the disk at an instant such that the chip rises vertically above the
point at which it broke off (Fig. 10-29).
How high above the point does it rise before starting to fall?
(c) What is the final angular speed of the broken disk?
22_Rigid_body/e_25_4_001.html
כבידה
באופן רגיל כוח המשיכה בין שני גופים עולה עם הקטנת המרחק בניהם.
אבל...
הוכח/י כי עבור התצורה הבאה קיים טווח מרחקים מסוים בו כוח הכובד יורד עם הקטנת המרחק בניהם:
22_Rigid_body/e_25_4_002.html
גיאות
א( חשב/י את הכוח הכבידה הפועל על המים על ידי השמש ועל ידי הירח.
ב( לאור התוצאה של סעיף א' ,מדוע מייחסים את תופעת הגיאות בעיקר לירח? )רמז :חשב/י את היחס בין כוח הגאות של השמש ושל
הירח(
22_Rigid_body/e_25_4_003.html
הגעה לירח
איזו מהירות צריך להעניק לטיל ע"מ שיגיע מכדו"ה לירח?
רמז :השאלה לא פשוטה כפי שהיא נראית!
22_Rigid_body/e_25_4_004.html
כבידה
ספינת חלל נמצאת במסלול מעגלי נמוך סביב כוכב לכת במערכת כוכבים שהתגלתה לאחרונה .הטבח הכניס את ארוחת הערב לתנור,
וכיוון את השעון ל 45-דקות .לאחר שעברו 45הדקות הטבח שם לב לכך שהספינה נמצאת בדיוק באותו מקום במסלולה שבו הייתה
בעת שהוא הכניס את הארוחה לתנור .כאשר ציין זאת באזני הצוות ,התרגש הקצין הטכני של הספינה וקרא " :זה רק במעט יותר מחצי
תקופת מסלולה של תחנת החלל הנמצאת במסלול נמוך סביב כדו"ה!" .למשמע הקצין הטכני קם מייד הקפטן והורה על הכנת צוות נחיתה
משום שלטענתו הכוכב עשוי פלטינה טהורה! איך הגיע הקפטן למסקנתו?
צפיפות הפלטינה – gr/cm3 21.4
צפיפות כדו"ה – gr/cm3 5.3
רמז :אין קשר לטבח!
22_Rigid_body/e_25_4_005.html
כבידה
א( חשב/י את צפיפות הירח.
ב( חשב/י את תאוצת הכובד על פני הירח ,הראה/י בעזרת טור טיילור )סדר (Iעד כמה היא משתנה הגובה כבידה מפני הירח.
בכמה תשתנה תשובתך אם תקח/י סדר ?IIמה היא השגיאה יחסית לחישוב המדויק?
נתונים:
22_Rigid_body/e_25_4_006.html
כבידה ותנועה הרמונית
מנהרה צרה וחלקה נחפרה לאורך קוטרו של כדו"ה )א'( .עוזבים בפתחה כדור .בהנחה שצפיפות כדו"ה קבועה ,הראה/י כי:
א( תנועת הכדור היא תה"פ.
ב( האם תנועתו תהיה תה"פ גם עבור מקרים ב' וג'?
25_Gravity/e_25_1_011.html
Gravity
. The star has a
and radius
What force acts on a star inside a spherically symmetric galaxy of the mass
mass
and is at binthe radius
from the center of the galaxy.
25_Gravity/e_25_1_012.html
Gravity
A binary stellar system consists of two identical stars rotating around the center-of-mass of the system on
circular orbits. The period of rotation
and the velocity of the stars are known. Find the masses and the
distance between the stars.
25_Gravity/e_25_1_013.html
Gravity
Saturn rings consist of football ball size particles which are moving on circular orbits around the planet. What is
the maximal ratio of the ring width to its inner radius if the velocities at the inner and outer edge should not
differ by more than 0.5\% ?
25_Gravity/e_25_1_014.html
Gravity
Three identical stars with the mass
are rotating so that they forman equilateral triangle (side length ). What
is the angular velocity ? What is the ratio
? Is this configuration stable ?
25_Gravity/e_25_1_015.html
Gravity
A particle is moving along the axis of a homogeneous ring (mass
, radius ). The particle velocity at
infinity is zero. What is its velocity when it passes through the center of the ring ?
25_Gravity/e_25_1_016.html
Gravity
The space between the two concentric spheres with the radii and ,
constant density . Find the gravitational field as a function of radius
, is filled with a matter with the
in the whole space.
25_Gravity/e_25_1_017.html
Gravity
A binary system consists of two stars with the masses
period of the orbital motion.
and
. The distance between them is
. Find the
25_Gravity/e_25_4_001.html
כבידה
.באופן רגיל כוח המשיכה בין שני גופים עולה עם הקטנת המרחק בניהם
...אבל
:י כי עבור התצורה הבאה קיים טווח מרחקים מסוים בו כוח הכובד יורד עם הקטנת המרחק בניהם/הוכח
25_Gravity/e_25_4_002.html
גיאות
א( חשב/י את הכוח הכבידה הפועל על המים על ידי השמש ועל ידי הירח.
ב( לאור התוצאה של סעיף א' ,מדוע מייחסים את תופעת הגיאות בעיקר לירח? )רמז :חשב/י את היחס בין כוח הגאות של השמש ושל
הירח(
25_Gravity/e_25_4_003.html
הגעה לירח
איזו מהירות צריך להעניק לטיל ע"מ שיגיע מכדו"ה לירח?
רמז :השאלה לא פשוטה כפי שהיא נראית!
25_Gravity/e_25_4_004.html
כבידה
ספינת חלל נמצאת במסלול מעגלי נמוך סביב כוכב לכת במערכת כוכבים שהתגלתה לאחרונה .הטבח הכניס את ארוחת הערב לתנור,
וכיוון את השעון ל 45-דקות .לאחר שעברו 45הדקות הטבח שם לב לכך שהספינה נמצאת בדיוק באותו מקום במסלולה שבו הייתה
בעת שהוא הכניס את הארוחה לתנור .כאשר ציין זאת באזני הצוות ,התרגש הקצין הטכני של הספינה וקרא " :זה רק במעט יותר מחצי
תקופת מסלולה של תחנת החלל הנמצאת במסלול נמוך סביב כדו"ה!" .למשמע הקצין הטכני קם מייד הקפטן והורה על הכנת צוות נחיתה
משום שלטענתו הכוכב עשוי פלטינה טהורה! איך הגיע הקפטן למסקנתו?
צפיפות הפלטינה – gr/cm3 21.4
צפיפות כדו"ה – gr/cm3 5.3
רמז :אין קשר לטבח!
25_Gravity/e_25_4_005.html
כבידה
א( חשב/י את צפיפות הירח.
ב( חשב/י את תאוצת הכובד על פני הירח ,הראה/י בעזרת טור טיילור )סדר (Iעד כמה היא משתנה הגובה כבידה מפני הירח.
בכמה תשתנה תשובתך אם תקח/י סדר ?IIמה היא השגיאה יחסית לחישוב המדויק?
נתונים:
25_Gravity/e_25_4_006.html
כבידה ותנועה הרמונית
מנהרה צרה וחלקה נחפרה לאורך קוטרו של כדו"ה )א'( .עוזבים בפתחה כדור .בהנחה שצפיפות כדו"ה קבועה ,הראה/י כי:
א( תנועת הכדור היא תה"פ.
ב( האם תנועתו תהיה תה"פ גם עבור מקרים ב' וג'?
25_Gravity/e_25_5_101.html
גרביטציה
רוצים להכניס טיל שמסתו m=1000kgלמסלול מעגלי קבועה סביב כדוה" א כך שיקיף אותו אחת ל 12-שעות.
א.מהו רדיוס המסלול ?
ב.מהי מהירות הטיל ?
ג.באיזו מהירות v0יש לשגר את הטיל מפני כדוה" א )בהזנחת קיום האטמוספירה( ?
25_Gravity/e_25_5_102.html
גרביטציה
חללית שמסתה 10000ק" ג נעה סביב כדוה" אבמסלול מעגלי שרדיוסו r = 3Rבאשר ) = Rרדיוס כדוה" א( .נתונה תאוצת הכובד g
ע"פ כדוה" א.
א.מהי תאוצת הכובד במרחק ? r = 3 R
ב.באיזו מהירות נעה החללית ?
ג.מהי תוספת האנרגיה שיש לתת לחללית הנ" ל ע" מ שתימלט ממקומה ?
לווין שמסתו 400ק" ג סובב סביב כדוה" א במרחק Rמפני כדוה" א ) = Rרדיוס כדוה" א( .בעזרת רקטה משנים את מהירות הלווין
ומעבירים אותו למסלול מעגלי חדש שרדיוסו .8R
א.מהי האנרגיה שהושקעה ע" י הרקטה לשינוי מסלול הלווין ?
ב.מהי מהירות הלווין בשני המסלולים ?
25_Gravity/e_25_5_103.html
גרביטציה
שני גופים שמסתם 20ק"ג מונחים בטעות בו זמנית כלווינים סביב כדוה" א ברדיוס סיבוב של 107מטרים כאשר המרחק בינהם
הוא 2*107מטרים .המהירות ניתנת ללויינים בכיוונים מנוגדים.
אם ההתנגשות בין הגופים היא אלסטית :
א.מהו הזמן עד להתנגשות הראשונה ?
ב.מהו הזמן בין כל 2התנגשויות סמוכות ?
אם ההתנגשות בין הגופים היא פלסטית :
ג.מהי האנרגיה האובדת בהתנגשות ?
ד.מהי המהירות בה פוגעים הגופים בארץ ?
25_Gravity/e_25_5_104.html
גרביטציה
,כאשר
הוא רדיוס כדה"א .בעזרת רקטה ,משנים את מהירות הלווין
לווין שמסתו 400ק"ג סובב סביב כדה"א בגובה
ועבירים אותו למסלול מעגלי ברדיוס
.
?א( מצא את האנרגיה שהושקעה ע"י הרקטה על מנת לשנות את מסלול הלווין
ב( מהי מהירות הלווין בשני המסלולים
25_Gravity/e_25_5_105.html
גרביטציה
טיל נורה מפני כדה"א במהירות
.
?א( מהוה גובה המקסימלי אליו מגיע הטיל
ב( מהי מהירות הטיל בגובה 100ק"מ מעל פני כדה"א
25_Gravity/e_25_5_106.html
גרביטציה
.לווין נמצא מעל אותה נקודה מעל קו המשווה
?א( מהו זמן המחזור של סיבוב הלווין
?ב( מהו רדיוס הסיבוב שלו
ג( מהו גובה הלווין מעל פני כדה"א
25_Gravity/e_25_5_107.html
גרביטציה
ומסותיהם
ו
נמצאים במצב נייח כאשר מרכזיהם במרחק
שני כוכבים שרדיוסם
.זה לעומת זה
?א( מהם חוקי השימור בבעיה זו
?ב( מהי האנרגיה הפוטנציאלית ההתחלתית של המערכת
?ג( מהיה מהירותו של כל אחד מהכוכבים רגע לפני ההתנגשות
ד( מהי עבודת כוח הרביטציה על הגופים עד לרגע ההתנגשות
זה מזה .ממצב זה ,הם מתחילים ליפול
25_Gravity/e_25_5_108.html
גרביטציה
במסלול מעגלי במהירות .לווין שני נע סביב אותו כוכב במהירות
.
לווין שמסתו נע סביב כוכב שמסתו
?א( לאיזה מהלווינים רדיוס סיבוב גדול יותר ופי כמה
?ב( לאיזה מהם זמן מחזור גדול יותר ופי כמה
ג( מטאוריט פגע בלווין הראשון בכיוון משיק לתנועתו וגרם להכפלת מהירותו .האם הלווין יתנתק מהכוכב
25_Gravity/e_25_5_109.html
גרביטציה
חללית שמסתה 10000ק"ג נעה סביב כדוה"א במסלול מעגלי שרדיוסו r = 3R
) = Rרדיוס כדוה"א(.
נתונה תאוצת הכובד gע"פ כדוה"א.
א .מהי תאוצת הכובד במרחק ? r = 3 R
ב .באיזו מהירות נעה החללית ?
ג .מהי תוספת האנרגיה שיש לתת לחללית הנ"ל ע"מ שתימלט ממקומה ?
25_Gravity/e_25_8_001.html
7. A typical neutron star may have a mass equal to that of the Sun but a radius of only 10.0 km.
?(a) What is the gravitational acceleration at the surface of such a star
?(b) How fast would an object be moving if it fell from rest through a distance of 1.20 m on such a star
25_Gravity/e_25_8_002.html
10. Two concentric shells of uniform density having masses M1 and M2 are situated as shown in Fig. 14-29.
Find the force on a particle of mass m when the particle is located at
(a) r = a,
(b) r = b, and
(c) r = c. The distance r is measured from the center of the shells.
25_Gravity/e_25_8_003.html
14. Show that the velocity of escape from the Sun at the Earth's distance from the Sun is
the Earth in its orbit, assumed to be a circle.
(This is a specific case of a general result for circular orbits: Vesc = 2VOrb.)
2 times the speed of
25_Gravity/e_25_8_004.html
15. A rocket is accelerated to a speed of v = 2(gRE)1/2 near the Earth's surface and then coasts (moves)
upward.
(a) Show that it will escape from the Earth.
(b) Show that very far from the Earth its speed is v = (2gRE)1/2.
25_Gravity/e_25_8_005.html
16. The Sun, mass 2.0 X 1030 kg, is revolving about the center of the Milky Way galaxy, which is 2.2 X 1020
m away.
It completes one revolution every 2.5 X l08 years. Estimate the number of stars in the Milky Way.
(Hint: Assume for simplicity that the stars are distributed with spherical symmetry about the galactic center and
that our Sun is essentially at the galactic edge.)
25_Gravity/e_25_8_006.html
19. Two neutron stars are separated by a center-to-center distance of 93.4 km. They each have a mass of 1.56 X
l030 kg and a radius of 12.6 km.
They are initially at rest with respect to one another.
(a) How fast are they moving when their separation has decreased to one-half of its initial value?
(b) How fast are they moving just before they collide? Ignore relativistic effects.
25_Gravity/e_25_8_007.html
20. Two particles of mass m and M are initially at rest an infinite distance apart.
Show that at any instant their relative velocity of approach attributable to gravitational attraction is (2G(M +
m)/d)1/2 ,
where d is their separation at that instant.
25_Gravity/e_25_8_008.html
24. Determine the mass of the Earth from the period T and the radius r of the Moon's orbit about the Earth: T =
27.3 days and r = 3.82 X 105 km.
25_Gravity/e_25_8_009.html
26. Spy satellites have been placed in the geosynchronous orbit above the Earth's equator.
What is the greatest latitude L from which the satellites are visible from the Earth's surface? See Fig. 14-30.
25_Gravity/e_25_8_010.html
28. Use conservation of energy and an expression for the total energy to show that the speed v of an object in an
elliptical orbit
satisfies the relation v2 = GM(2/r-1/a). Here r is the distance of the orbiting body from the central body of mass
M.
25_Gravity/e_25_8_011.html
29. A comet moving in an orbit of eccentricity 0.880 has a speed of 3.72 km/s when it is most distant from the
Sun. Find its speed when it is closest to the Sun.
25_Gravity/e_25_8_012.html
32. As shown in Fig. 14-31, two bodies (of masses m and M) in¬teracting through their mutual gravitational
force will orbit with the same angular speed
about their center of mass C.
(a) Show that in this case Kepler's law of periods becomes T2 = 4π2r3(1+R/r)2/(GM).
(b) Evaluate the correction factor (1 + R/r)2 for the motion of the Earth and the Sun and also for the motion of
the
Earth and the Moon, in each case ignoring the gravitational effect of the other bodies in the solar system.
25_Gravity/e_25_8_013.html
1. Two point-like objects, each with mass m, are connected by a massless rope of length l.
The objects are suspended vertically near the surface of Earth, so that one object is hanging below the other.
Then the objects are released. Show that the tension in the rope is T = GMml/R3 where M is the mass of the
Earth and R is its radius.
25_Gravity/e_25_8_014.html
8. The fastest possible rate of rotation of a planet is that for which the gravitational force on material at the
equator barely provides the centripetal force needed for the rotation. (Why?)
(a) Show then that the corresponding shortest period T of rotation is given by T 2 = 3 /(G ) where is the
density of the planet, assumed to be homogeneous.
(b) Evaluate the rotation period T assuming a density of 3.0 g/cm3, typical of many planets, satellites, and
asteroids.
No such object is found to be spinning with a period shorter than found by this analysis.
25_Gravity/e_25_8_015.html
11. The following problem is from the 1946 "Olympic" examination of Moscow State University (see Fig. 1436):
A spherical hollow is made in a lead sphere of radius R, such that its surface touches the outside surface of the
lead sphere and passes through its center.
The mass of the sphere before hollowing was M. With what force, according to the law of universal gravitation,
will the hollowed lead
sphere attract a small sphere of mass m, which lies at a distance d from the center of the lead sphere on the
straight line connecting the centers of the spheres and of the hollow?
25_Gravity/e_25_8_016.html
14. Use the model of the Earth shown in Fig. 14-37 to examine the variation of g with depth in the interior of
the Earth.
(a) Find g at the core-mantle interface. How does g vary from this interface to the center of the Earth?
(b) Show that g has a local minimum within the mantle; find the distance from the Earth's center where this
occurs and the associated value of g.
(c) Make a sketch showing the variation of g within the Earth.
25_Gravity/e_25_8_017.html
20. A rocket burns out at an altitude h above the Earth's surface. Its speed vo at burnout exceeds the escape
speed vesc appropriate to the burnout altitude.
Show that the speed v of the rocket very far from the Earth is given by v = (vo2 - vesc2)1/2.
25_Gravity/e_25_8_018.html
25. Consider two satellites A and B of equal mass m, moving in the same circular orbit of radius r around the
Earth but in opposite senses of revolution and therefore on a collision course (see Fig.14-42).
(a) In terms of G, ME, m, and r, find the total mechanical energy of the two-saiellite-plus-Earth system before
collision.
(b) If the collision is completely inelastic so that wreckage remains as one piece of tangled material, find the
total mechanical energy immediately after collision.
(c) Describe the subsequent motion of the wreckage.
25_Gravity/e_25_8_019.html
26. The Sun's center is at one focus of the Earth's orbit. How far is it from the other focus?
Express your answer in terms of the radius of the Sun RS = 6.96 X 108 m.
The eccentricity of the Earth's orbit is 0.0167 and the semi-major axis is 1.50 X 1011 m.