Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Automatic Control System Modelling Modelling dynamical systems Engineers use models which are based upon mathematical relationships between two variables. We can define the mathematical equations: • Measuring the responses of the built process (black model) Not interested in the number and the real value of the time constants of the process, only it is enough that the response is similar sufficient accuracy • Using the basic physical principles (grey model). In order to simplification of mathematical model the small effects are neglected and idealised relationships are assumed. Developing a new technology or a new construction nowadays it’s very helpful applying computer aided simulation technique. This technique is very cost effective, because one can create a model from the physical principles without building of process. Grey box model Modelling mechanical systems Newton’s law one-dimensional translation and rotational systems. d 2s F m dt 2 ; ds d 2 M I dt 2 ; FD C v C dt ; Fs ks velocity d dt ds a dt acceleration d 2s a 2 dt d 2 2 dt F: force [N]; FD: absorber’s force; Fs: spring’s force M: moment about centre of mass of body [Nm] I: the body’s moment of inertia [kgm2] s, : displacement [m; rad] v, ω: velocity [m/sec; rad/sec] a, : acceleration [m/sec2; rad/sec2] C: friction constant [Nsec/m] k: spring constant [N/m] •Assign variables and sufficient to describe an arbitrary position of the object. •Draw a free-body diagram of each components and indicate all forces acting. •Apply Newton’s law in translation and rotational form. •Combine the equations to eliminate internal forces. Modelling mechanical systems Road surface y t m2 k2 C x t m1 k1 r t The car’s wheel vertical motion is assumed onedimensional and the mass hasn’t got extension. The sock absorber is represented by a dashpot symbol with friction constant C. The force from the spring acts on both masses in proportional their relative displacement with spring constant k. The equilibrium positions of the two mass are offset from the spring’s unstretched positions because of the force of gravity. Nowadays the mathematical programs allow one to create a better model. The system can be approximated by the simplified system shown in left. Modeling mechanical systems d 2s F m dt 2 y t m2 k2 C Fs ks d ( y x) d2y C k2 ( y x) m2 2 dt dt d( y x ) d2x C k 2 ( y x ) k1 ( x r ) m1 2 dt dt x t m1 k1 ds FD C dt r t The positive displacements or velocity of mass, and so the positive force are signed by up arrows. Simulating the system by MATLAB k2 C 1 m2 d 2 y (t ) dt 2 dt y (t ) dt dy (t ) dt k2 C 2 r (t ) k1 1 m1 d x(t ) dt 2 dt k1 dx (t ) dt dt x(t ) Difference equations y7 y(i) y(iT0 ) y6 y5 y4 y3 y2 y1 y0 0 T0 2T0 3T0 4T0 5T0 6T0 7T0 dy (t ) y (i ) y (i 1) dt T0 A block input is energised by x(t), and the response is y(t). Because of the response needs any time or in simulation the calculation of the response also needs any time, and so y(iT0) can be calculated from previous value than x(iT0). The sampled block has a delay time (T0). Example: dy (t ) T y (t ) bx(t ) dt d 2 y (t ) y (i) 2 y (i 1) y(i 2) dt 2 T02 d 3 y (t ) y (i) 3 y (i 1) 3 y (i 2) y (i 3) dt 3 T03 iT0 i y(t )dt T y(i) 0 0 0 T y (i ) y (i 1) y (i ) bx(i 1) T0 T T0 T y (i ) y (i 1) bx(i 1) T0 T0 y (i ) T T y (i 1) 0 bx(i 1) T T0 T T0 Using difference equation d 2x dx dy m1 2 C k2 x k1x C k2 y k1r dt dt dt d2y dy dx m2 2 C k2 y C k2 x dt dt dt r (0) r0 , x(0) y(0) 0, and r (1) r1 , x(1) x1 , y(1) 0 m1 C { x ( i ) 2 x ( i 1 ) x ( i 2 )} {x(i) x(i 1)} (k1 k2 ) x(i) 2 T T C { y (i ) y (i 1)} k2 y (i) k1r (i 1) T m2 C { y (i 1) 2 y (i) y (i 1)} { y (i 1) y (i )} k2 y (i 1) 2 T T C {x(i) x(i 1)} k2 x(i) T Using Laplace transform to model mechanical systems d ( y x) d 2x C k2 ( y x) k1 ( x r ) m1 2 dt dt d ( y x) d2y C k2 ( y x) m2 2 dt dt m2 k2 C Csy(s) Csx(s) k2 y(s) k2 x(s) k1x(s) k1r (s) m1s 2 x(s) m1 k1 Csy(s) Csx(s) k2 y(s) k2 x(s) m2 s 2 y(s) m2 s 2 y(s) k1x(s) k1r (s) m1s 2 x(s) Block modeling mechanical system Csy(s) Csx(s) k2 y(s) k2 x(s) m2 s 2 y(s) m2 s 2 y(s) k1x(s) k1r (s) m1s 2 x(s) m2 s 2 y(s) k1 r (s ) x (s ) m1s 2 x( s ) 1 sx (s ) m1s 1 s C k2 1 sy (s ) m2 s C k2 1 s y (s ) Block modeling mechanical system Block reduction m2 s 2 k1 m1s 2 r (s ) 1 m1s 1 m1s 1 s k2 C 1 m2 s C k2 1 s s y (s ) Modeling electromechanical systems DC motor’s voltages. dI a d ; U E K e ; UL L dt dt U R RI a ; The electromotive force based on: U E B l DC motor’s tongues. d Tf C ; dt Ta K a I a B: magnet field [T: Tesla]; Ia: armature current UE: electromotive force [V] UL: voltage on inductance [V] UR: voltage on resistance [V] Ta armature torque Tf friction torque TL load torque C: friction constant [Nsec/m] Modeling DC motor Ra La U dc Ia Ue Ta T f TL M Ja armature inertia angular displacement Ta armature torque Tf friction torque TL load torque Ia armature current Ra armature resistance La armature inductance Generated electromotive force (emf) against the applied armature voltage U U dc U e U R U L 0 U dc Ke d dI Ra I a La a dt dt d 2 d T J T T T K I C TL a a f L a a 2 dt dt Ke electromotive force constant Ka motor torque constant C rotational friction constant Simulating the system by MATLAB Ra U dc 1 La dI a dt dt I a (t ) Ka d dt 2 2 TL (t ) 1 Ja C dt d dt Ke dt (t ) Example: Block modeling DC motor Ra La U dc Ue Ia Ta T f TL M U dc K e d 2 d J a 2 Ka Ia C TL dt dt Ja TL La U dc dI a dt 1 dt La d dI Ra I a La a dt dt d 2 Ja 2 dt Ta Ia Ka 1 dt Ja Tf C Ra Ke d dt dt In time domain using difference equations Ke d dI Ra I a La a U dc dt dt Ke L { (i ) (i 1)} Ra I a (i ) a {I a (i ) I a (i 1)} U dc (i 1) T T La La Ke {Ra }I a (i ) U dc (i 1) I a (i 1) { (i ) (i 1)} T T T T La Ke I a (i 1) U dc (i 2) I a (i 2) { (i 1) (i 2)} La RaT La RaT La RaT d 2 d d 2 d J a 2 Ka I a C TL J a 2 C K a I a TL dt dt dt dt Ja C { ( i ) 2 ( i 1 ) ( i 2 )} { (i ) (i 1)} K a I a (i 1) TL (i 1) 2 T T In operator frequency domain Ra La U dc Ia U dc K e Ue Ta T f TL M Ja d dI Ra I a La a dt dt d 2 d J a 2 Ka Ia C TL dt dt x (s ) G(s) y (s ) Assuming than Udc is constant and the system is steady-state when one change the value of Udc Examination of dynamic behaviour can be used the Laplace transform. U dc (s) Ke s (s) Ra I a (s) La sI a (s) J a s 2 ( s) K a I a ( s) Cs ( s) TL ( s) y( s) G ( s ) y ( s ) G ( s ) x( s ) x( s ) Block modeling DC motor Ra La U dc Ia Ue Ta T f TL U dc (s) Ke s (s) Ra I a (s) La sI a (s) M J a s 2 ( s) K a I a ( s) Cs ( s) TL ( s) Ja TL U dc La sI a 1 La s Ia Ka Ta J a s 2 1 Jas Tf Ra C Ke s 1 s Simpler block model of DC motor U dc Ka Ra La s TL 1 C Jas 1 s Ke TL TL U dc Ra La s Ka U dc Ra La s Ka Ka 1 Ra La s C J a s Ke 1 s Ka 1 ( Ra La s )(C J a s ) K e s Models of electronic circuit Kirchhoff’s current law: The algebraic sum of current leaving a junction or node equals the algebraic sum of the current entering that node. Kirchhoff’s current law: The algebraic sum of all voltages taken around a closed path in a circuit is zero. Resistor Capacitor du (t ) dt u (t ) Ri (t ) i (t ) C U ( s ) RI ( s ) I ( s ) CsU ( s ) Inductor u (t ) L di(t ) dt U ( s) LsI ( s) Models of electronic circuit I I3 I 2 1 A B U1 U 2 U1 G1 ( s) I 1 Au (s) I 2 I 3 All resistance equal R and all capacitance equal C. Point “A” is nearly ground and such as a summing junction for the currents. “B” is a take off point for U2. The OpAmp amplitude gain is Au(s) U1 U2 I2 G2 (s) I 1( s) 1 1 U1 ( s) 2 R 1 sC R I 2 1 I 2( s ) sC U U ( s ) 1 sCR 2 2 G3 ( s) I3 I 3( s) 1 1 U U 2 ( s) 2 R 1 sC R 2 2 Modeling heat flow Heat energy flow. 1 q (T1 T2 ); R Thermal conductivity: 1 kA R l A: cross-sectional area l: length of the heat-flow path k: thermal conductivity constant Temperature as a function of heat-energy flow: Specific heat: dT 1 q; dt C C m cv q: heat energy flow J/sec C: thermal capacity J/°C R: thermal resistance °C/J T: temperature °C Heat flow models T0 q2 R0 q1 room T1 C mcv m: the mass of the substance cv: specific heat constant R1 The net heat-energy flow into a substance: dT 1 q dt C C dT q dt The heat energy flows through substances (across the room’s wall): q 1 1 1 (T0 T1 ) q1 q2 ( )(T0 T1 ) R R1 R1 The heat can also flow when a warmer mass flow into a cooler mass or vice dm versa: q cv (T1 T0 ) dt Heat flow models The total heat-energy flow: C C1 dT q dt q C dT dm 1 cv (T1 T2 ) (T0 T1 ) dt dt R 1 (T0 T1 ) R dT1 dm k A kA qm (q1 q2 ) cv (T1 T2 ) ( 2 2 1 1 )(T0 T1 ) dt dt l2 l1 sT1 (s) sm(s)cvT1 (s) constT1 (s) T0 (s) sm(s)cvT2 (s)} It’s non-linear, except T1=T2. Modelling a heat exchanger Ts dmw K w Aw water dt Twi Tw Treal dms dAs K s steam dt dt Tsi The time delay between the measurement dTs dAs 1 K s cvs (Tsi Ts ) (Ts Tw ) dt dt R and the exit flow of the water: Treal Tw (t d ) dT 1 Cw w Aw K wcvw (Twi Tw ) (Ts Tw ) dt R Cs As: area of the steam inlet valve, Aw: area of the water inlet Ks: flow coefficient of the inlet valve, Kw: flow coefficient of the water inlet cvs: specific heat of steam, cvw: specific heat of water Tsi: temperature of inflow steam, Twi: temperature of inflow water Ts: temperature of outflow steam, Ts: temperature of outflow water Cs=mscvs thermal capacity of the steam, Cw=mwcvw thermal capacity of the water R: thermal resistance (average over the entire exchanger) Simulating heat exchanger Cs dT 1 dTs dAs 1 K s cvs (Tsi Ts ) (Ts Tw ) Cw w Aw K wcvw (Twi Tw ) (Ts Tw ) dt R dt dt R K s cvs As (t ) d dt Cs Cw dTs dt dTw dt Aw K wcvw 1 Cs 1 R 1 Cw dt Tsi (t ) Ts (t ) dt Tw (t ) Twi (t ) Laplace form heat exchanger Cs dTs dAs 1 dT 1 K s cvs (Tsi Ts ) (Ts Tw ) Cw w Aw K wcvw (Twi Tw ) (Ts Tw ) dt dt R dt R The equation is nonlinear because the state variable Ts is multiplied by the the control input As. The equation can be linearized at the working point Ts0, and so Tsi-Ts0=Ts nearly constant. To measure all temperature from Twi, it’s eliminated Twi=0. 1 (Ts ( s) Tw ( s )) R 1 Cw sTw ( s ) Aw K wcvwTw ( s ) (Ts ( s ) Tw ( s )) R Cs sTs ( s ) As ( s ) K s cvs Ts Ts ( s ) Tw ( s) RK s cvs Ts 1 As ( s ) Tw ( s ) 1 sRC s 1 sRC s Tw ( s ) Treal ( s ) Tw ( s )e s d 1 Ts ( s ) 1 RAw K wcvw sRC w 1 RK s cvs Ts 1 1 As ( s ) Tw ( s ) 1 RAw K wcvw sRC w 1 sRC s 1 RAw K wcvw sRC w 1 sRC s Tw ( s){ Aw K wcvw s(Cw Cs ) sRAw K wcvwCs s 2 RC wCs } K s cvs Ts As ( s) Block model of heat exchanger Cw sTw ( s ) Aw K wcvwTw ( s ) Cs sTs ( s ) As ( s ) K s cvs Ts 1 (Ts ( s ) Tw ( s )) R 1 (Ts ( s) Tw ( s )) R Treal ( s ) Tw ( s )e s d 1 R As (s ) K s cvs Ts Cs sTs (s) 1 C s sR RTs (s ) Cw sTw (s) 1 Cw s 1 Aw K wcvw Tw (s ) e s Black box model Modeling by reaction curve Feedback control plant GW(s) controller GA(s) GC(s) A/M GP2(s) GT(s) Process field When auto / manual switch is manual position (open), then GC(s)=1 R0+r GP1(s) GC(s) A/M W U0+u YM0+yM GA(s) GT(s) GW(s) GP(s) Modelled the process from reaction curve by dead-time proportional first order transfer function HPT1 1 yM sTu G p ( s) K P e ; Kp 1 sTg u yM , u yM u Tu Tg t The error of the model The principle of the less squares: 2 { x ( i ) x ( i ) } measured mod el i 0 The better model the less sum of value of the squares. The error of the model: N | y i 0 M (i ) measured yM (i ) mod el | 100% N | y i 0 M (i ) measured | A better model of process from reaction curve by dead-time second order transfer function HPT2 ym , u G p (s) K P 1 1 e sTt 1 sT1 1 sT2 ym u It needs computer! The beginning parameters: T1 T2 Tf 2 ,..Tt t Modelled the process from reaction curve ym , u by “n” order transfer function PTn 1 G p ( s) K p (1 sT )n 70% ym u 30% 10% t10 t30 t t70 Modelled the process from reaction curve by dead-time integral first order transfer function HIT1 1 1 G p ( s) Ti 1 sTg ym , u u Tg Ti t