Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
EEL6935 Advanced MEMS (Spring 2005) Instructor: Dr. Huikai Xie Active Devices -- BJT & MOSFET Lecture 11 Agenda: Ê Cross-section Ê N/P/N Bipolar Junction Transistor (BJT) Ê n-channel Metal Oxide Semiconductor Field Effect Transistor (n-channel MOSFET) Amplifier Basics – – – – EEL6935 Advanced MEMS Device models Current mirrors Single-stage amplifiers Operational amplifier configurations 2005 H. Xie 2/14/2005 1 EEL6935 Advanced MEMS 2005 H. Xie 2 MOSFET Small-signal Model Active Devices -- BJT & MOSFET MOSFET Small-signal Equivalent Circuit Cgd Active region G D vgs Cgs gmvgs rds Cdb S Common-emitter configuration Ê iC vs. vCE DC characteristics with base-emitter voltage (or base current) as parameter Other configurations are commonbase and common-collector EEL6935 Advanced MEMS 2005 H. Xie Common-source configuration Ê iD vs. vDS DC characteristics with gate-to-source voltage as parameter Other configurations are commongate and common-drain 3 EEL6935 Advanced MEMS 2005 H. Xie 4 Device Model Summary Device Model Summary Johns and Martin, Analog Integrated Circuit Design, p.56-60 EEL6935 Advanced MEMS 2005 H. Xie 5 EEL6935 Advanced MEMS 2005 H. Xie Device Model Summary EEL6935 Advanced MEMS 2005 H. Xie 6 Device Model Summary 7 EEL6935 Advanced MEMS 2005 H. Xie 8 Device Model Summary Operating Point RL vDS vD Active region Operating point iD = (vD-vDS)/RL Johns and Martin, Analog Integrated Circuit Design, p.56-60 EEL6935 Advanced MEMS 2005 H. Xie 9 EEL6935 Advanced MEMS 2005 H. Xie Diode-connected Transistor 10 Basic Current Mirror vD ID RL Active region Iin RD Active region vDS Iout Q2 Q1 Operating point iD = (vD-vDS)/RL iD = (vD-vDS)/RL iD = (vD-vDS)/RL vGS = vDS EEL6935 Advanced MEMS 2005 H. Xie • ID stays almost constant for a given VGS for a wide range of VDS Current can be adjusted by RL Current can tune VDS Sizing transistor to adjust VDs, with ID fixed • • • • Q1 and Q2 are identical Iin is set by RD VGS1 (and VGS2) are set by RD Thus Iout = Iin • Iout can exactly match Iin or can be a fraction of it by adjusting the ratio between (W1/L1) and (W2/L2) ID = 11 EEL6935 Advanced MEMS 2005 H. Xie µn Cox W 2 L (VGS − Vtn ) 2 12 Basic Single-Stage Amplifiers Basic Single-Stage Amplifiers Common-source Amplifier Common-drain Amplifier Q2 Q1 Vin ID Q3 Ibias Ibias Vin Q3 ID = • • • • µn Cox W 2 L (VGS − Vtn ) • • • • 2005 H. Xie Q2 Q1 2 High input impedance Active load Passive load for low-gain, high frequency Most popular EEL6935 Advanced MEMS Vout Vout 13 EEL6935 Advanced MEMS Source follower Voltage buffer Voltage gain ~ 1 but < 1 Current gain 2005 H. Xie Basic Single-Stage Amplifiers 14 High-Quality Current Mirrors Cascode Current Mirror Common-gate Amplifier Wilson Current Mirror Iout Q2 Q1 Ibias Vout Vbias Q3 Q3 Q4 Q1 Q2 Iout rout Q3 Q4 Q1 Q2 rout Vin • High output impedance • rout = (rds2gm4)rds4 • Impedance increased by 10x to 100x • Reduce output swings • Small input impedance • Active load • Current amplification EEL6935 Advanced MEMS 2005 H. Xie 15 EEL6935 Advanced MEMS 2005 H. Xie • • • • • High output impedance Shunt-series feedback rout = rds4 (rds1gm1)/2 Reduce output swings Q3 is not required 16 Cascode Gain Stage Telescopic-cascode Amplifier Folded-cascode Amplifier Vout Q2 Vin Q3 Q2 Q1 CL Ibias2 + Vin - Vbias Vout AV = gm1zout zout = rout // 1/(sCL) 2005 H. Xie rout = rds2 // rds4 17 EEL6935 Advanced MEMS 2005 H. Xie General Amplifiers dvO dvI At operating point (known also as Quiescent point) 18 Operational Amplifiers Amplifier Saturation Ê hard limit at power supply limits Ê Jargon: “rail” = power supply – rail-to-rail Amplifier Nonlinearity AV = CL Q2 Ibias • Allows same dc level for input and output signals • Slower due to p-channel • Limit the voltage across the input transistor Q1 CL • Common-source plus common-gate • High gain from single stage rout Vout Vin Q1 EEL6935 Advanced MEMS Q4 Ibias1 Ibias Vbias Differential Pair Operational Amplifiers Ê Basic building block for analog signal processing circuits – First integrated circuit operational amplifier, µ709, made by Fairchild Semiconductor in 1960s followed by the µ741. – Consists of active transistors, resistors, and limited number of capacitors – Approximated by single-pole frequency response vO (t ) = VO + vo (t ) Ê Three stages – Differential amplifier stage Power supply Inverting input – Amplifies difference between two inputs – High-gain amplifier stage – Output amplifier stage Non-inverting input vI (t ) = VI + vi (t ) 2005 H. Xie Power supply Ref. Senturia, Microsystem Design, p. 382. Ref. Sedra and Smith, Microelectronic Circuits, p. 16. EEL6935 Advanced MEMS Output 19 EEL6935 Advanced MEMS 2005 H. Xie 20 Operational Amplifiers Operational Amplifiers Non-inverting Amplifier Vo R = 1+ 1 Vs R2 Integrator Differentiator Transimpedance Amplifier Inverting Amplifier Vo R =− 2 Vs R1 EEL6935 Advanced MEMS 2005 H. Xie vo = − vo = − R1 I s 21 1 Vs (t )dt R1C ∫ EEL6935 Advanced MEMS 2005 H. Xie vo = − R1C dvs dt 22